前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
社区首页 >专栏 >cuda教程[新手入门学编程]

cuda教程[新手入门学编程]

作者头像
Java架构师必看
发布于 2022-03-22 07:03:57
发布于 2022-03-22 07:03:57
3.1K02
代码可运行
举报
文章被收录于专栏:Java架构师必看Java架构师必看
运行总次数:2
代码可运行

大家好,我是架构君,一个会写代码吟诗的架构师。今天说一说cuda教程[新手入门学编程],希望能够帮助大家进步!!!

CUDA(Compute Unified Device Architecture)的中文全称为计算统一设备架构。做图像视觉领域的同学多多少少都会接触到CUDA,毕竟要做性能速度优化,CUDA是个很重要的工具,CUDA是做视觉的同学难以绕过的一个坑,必须踩一踩才踏实。CUDA编程真的是入门容易精通难,具有计算机体系结构和C语言编程知识储备的同学上手CUDA编程应该难度不会很大。本文章将通过以下五个方面帮助大家比较全面地了解CUDA编程最重要的知识点,做到快速入门:

  1. GPU架构特点
  2. CUDA线程模型
  3. CUDA内存模型
  4. CUDA编程模型
  5. CUDA应用小例子

1. GPU架构特点

首先我们先谈一谈串行计算和并行计算。我们知道,高性能计算的关键利用多核处理器进行并行计算。

当我们求解一个计算机程序任务时,我们很自然的想法就是将该任务分解成一系列小任务,把这些小任务一一完成。在串行计算时,我们的想法就是让我们的处理器每次处理一个计算任务,处理完一个计算任务后再计算下一个任务,直到所有小任务都完成了,那么这个大的程序任务也就完成了。如下图所示,就是我们怎么用串行编程思想求解问题的步骤。

但是串行计算的缺点非常明显,如果我们拥有多核处理器,我们可以利用多核处理器同时处理多个任务时,而且这些小任务并没有关联关系(不需要相互依赖,比如我的计算任务不需要用到你的计算结果),那我们为什么还要使用串行编程呢?为了进一步加快大任务的计算速度,我们可以把一些独立的模块分配到不同的处理器上进行同时计算(这就是并行),最后再将这些结果进行整合,完成一次任务计算。下图就是将一个大的计算任务分解为小任务,然后将独立的小任务分配到不同处理器进行并行计算,最后再通过串行程序把结果汇总完成这次的总的计算任务。

所以,一个程序可不可以进行并行计算,关键就在于我们要分析出该程序可以拆分出哪几个执行模块,这些执行模块哪些是独立的,哪些又是强依赖强耦合的,独立的模块我们可以试着设计并行计算,充分利用多核处理器的优势进一步加速我们的计算任务,强耦合模块我们就使用串行编程,利用串行+并行的编程思路完成一次高性能计算。

接下来我们谈谈CPU和GPU有什么区别,他们俩各自有什么特点,我们在谈并行、串行计算时多次谈到“多核”的概念,现在我们先从“核”的角度开始这个话题。首先CPU是专为顺序串行处理而优化的几个核心组成。而GPU则由数以千计的更小、更高效的核心组成,这些核心专门为同时处理多任务而设计,可高效地处理并行任务。也就是,CPU虽然每个核心自身能力极强,处理任务上非常强悍,无奈他核心少,在并行计算上表现不佳;反观GPU,虽然他的每个核心的计算能力不算强,但他胜在核心非常多,可以同时处理多个计算任务,在并行计算的支持上做得很好。

GPU和CPU的不同硬件特点决定了他们的应用场景,CPU是计算机的运算和控制的核心,GPU主要用作图形图像处理。图像在计算机呈现的形式就是矩阵,我们对图像的处理其实就是操作各种矩阵进行计算,而很多矩阵的运算其实可以做并行化,这使得图像处理可以做得很快,因此GPU在图形图像领域也有了大展拳脚的机会。下图表示的就是一个多GPU计算机硬件系统,可以看出,一个GPU内存就有很多个SP和各类内存,这些硬件都是GPU进行高效并行计算的基础。

现在再从数据处理的角度来对比CPU和GPU的特点。CPU需要很强的通用性来处理各种不同的数据类型,比如整型、浮点数等,同时它又必须擅长处理逻辑判断所导致的大量分支跳转和中断处理,所以CPU其实就是一个能力很强的伙计,他能把很多事处理得妥妥当当,当然啦我们需要给他很多资源供他使用(各种硬件),这也导致了CPU不可能有太多核心(核心总数不超过16)。而GPU面对的则是类型高度统一的、相互无依赖的大规模数据和不需要被打断的纯净的计算环境,GPU有非常多核心(费米架构就有512核),虽然其核心的能力远没有CPU的核心强,但是胜在多,

在处理简单计算任务时呈现出“人多力量大”的优势,这就是并行计算的魅力。

整理一下两者特点就是:

  • CPU:擅长流程控制和逻辑处理,不规则数据结构,不可预测存储结构,单线程程序,分支密集型算法
  • GPU:擅长数据并行计算,规则数据结构,可预测存储模式

现在的计算机体系架构中,要完成CUDA并行计算,单靠GPU一人之力是不能完成计算任务的,必须借助CPU来协同配合完成一次高性能的并行计算任务。

一般而言,并行部分在GPU上运行,串行部分在CPU运行,这就是异构计算。具体一点,异构计算的意思就是不同体系结构的处理器相互协作完成计算任务。CPU负责总体的程序流程,而GPU负责具体的计算任务,当GPU各个线程完成计算任务后,我们就将GPU那边计算得到的结果拷贝到CPU端,完成一次计算任务。

所以应用程序利用GPU实现加速的总体分工就是:密集计算代码(约占5%的代码量)由GPU负责完成,剩余串行代码由CPU负责执行。

2. CUDA线程模型

下面我们介绍CUDA的线程组织结构。首先我们都知道,线程是程序执行的最基本单元,CUDA的并行计算就是通过成千上万个线程的并行执行来实现的。下面的机构图说明了GPU的不同层次的结构。

CUDA的线程模型从小往大来总结就是:

  1. Thread:线程,并行的基本单位
  2. Thread Block:线程块,互相合作的线程组,线程块有如下几个特点:
  3. 允许彼此同步
  4. 可以通过共享内存快速交换数据
  5. 以1维、2维或3维组织
  6. Grid:一组线程块
  7. 以1维、2维组织
  8. 共享全局内存

Kernel:在GPU上执行的核心程序,这个kernel函数是运行在某个Grid上的。

  • One kernel <-> One Grid

每一个block和每个thread都有自己的ID,我们通过相应的索引找到相应的线程和线程块。

  • threadIdx,blockIdx
  • Block ID: 1D or 2D
  • Thread ID: 1D, 2D or 3D

理解kernel,必须要对kernel的线程层次结构有一个清晰的认识。首先GPU上很多并行化的轻量级线程。kernel在device上执行时实际上是启动很多线程,一个kernel所启动的所有线程称为一个网格(grid),同一个网格上的线程共享相同的全局内存空间,grid是线程结构的第一层次,而网格又可以分为很多线程块(block),一个线程块里面包含很多线程,这是第二个层次。线程两层组织结构如上图所示,这是一个gird和block均为2-dim的线程组织。grid和block都是定义为dim3类型的变量,dim3可以看成是包含三个无符号整数(x,y,z)成员的结构体变量,在定义时,缺省值初始化为1。因此grid和block可以灵活地定义为1-dim,2-dim以及3-dim结构,kernel调用时也必须通过执行配置<<<grid, block>>>来指定kernel所使用的网格维度和线程块维度。举个例子,我们以上图为例,分析怎么通过<<<grid,block>>>>这种标记方式索引到我们想要的那个线程。CUDA的这种<<<grid,block>>>其实就是一个多级索引的方法,第一级索引是(grid.xIdx, grid.yIdy),对应上图例子就是(1, 1),通过它我们就能找到了这个线程块的位置,然后我们启动二级索引(block.xIdx, block.yIdx, block.zIdx)来定位到指定的线程。这就是我们CUDA的线程组织结构。

这里想谈谈SP和SM(流处理器),很多人会被这两个专业名词搞得晕头转向。

  • SP:最基本的处理单元,streaming processor,也称为CUDA core。最后具体的指令和任务都是在SP上处理的。GPU进行并行计算,也就是很多个SP同时做处理。
  • SM:多个SP加上其他的一些资源组成一个streaming multiprocessor。也叫GPU大核,其他资源如:warp scheduler,register,shared memory等。SM可以看做GPU的心脏(对比CPU核心),register和shared memory是SM的稀缺资源。CUDA将这些资源分配给所有驻留在SM中的threads。因此,这些有限的资源就使每个SM中active warps有非常严格的限制,也就限制了并行能力。

需要指出,每个SM包含的SP数量依据GPU架构而不同,Fermi架构GF100是32个,GF10X是48个,Kepler架构都是192个,Maxwell都是128个。

简而言之,SP是线程执行的硬件单位,SM中包含多个SP,一个GPU可以有多个SM(比如16个),最终一个GPU可能包含有上千个SP。这么多核心“同时运行”,速度可想而知,这个引号只是想表明实际上,软件逻辑上是所有SP是并行的,但是物理上并不是所有SP都能同时执行计算(比如我们只有8个SM却有1024个线程块需要调度处理),因为有些会处于挂起,就绪等其他状态,这有关GPU的线程调度。

下面这个图将从硬件角度和软件角度解释CUDA的线程模型。

  • 每个线程由每个线程处理器(SP)执行
  • 线程块由多核处理器(SM)执行
  • 一个kernel其实由一个grid来执行,一个kernel一次只能在一个GPU上执行

block是软件概念,一个block只会由一个sm调度,程序员在开发时,通过设定block的属性,告诉GPU硬件,我有多少个线程,线程怎么组织。而具体怎么调度由sm的warps scheduler负责,block一旦被分配好SM,该block就会一直驻留在该SM中,直到执行结束。一个SM可以同时拥有多个blocks,但需要序列执行。下图显示了GPU内部的硬件架构:

3. CUDA内存模型

CUDA中的内存模型分为以下几个层次:

  • 每个线程都用自己的registers(寄存器)
  • 每个线程都有自己的local memory(局部内存)
  • 每个线程块内都有自己的shared memory(共享内存),所有线程块内的所有线程共享这段内存资源
  • 每个grid都有自己的global memory(全局内存),不同线程块的线程都可使用
  • 每个grid都有自己的constant memory(常量内存)和texture memory(纹理内存),),不同线程块的线程都可使用

线程访问这几类存储器的速度是register > local memory >shared memory > global memory

下面这幅图表示就是这些内存在计算机架构中的所在层次。

4. CUDA编程模型

上面讲了这么多硬件相关的知识点,现在终于可以开始说说CUDA是怎么写程序的了。

我们先捋一捋常见的CUDA术语:

第一个要掌握的编程要点:我们怎么写一个能在GPU跑的程序或函数呢?

通过关键字就可以表示某个程序在CPU上跑还是在GPU上跑!如下表所示,比如我们用__global__定义一个kernel函数,就是CPU上调用,GPU上执行,注意__global__函数的返回值必须设置为void。

第二个编程要点:CPU和GPU间的数据传输怎么写?

首先介绍在GPU内存分配回收内存的函数接口:

  • cudaMalloc(): 在设备端分配global memory
  • cudaFree(): 释放存储空间

CPU的数据和GPU端数据做数据传输的函数接口是一样的,他们通过传递的函数实参(枚举类型)来表示传输方向:

cudaMemcpy(void *dst, void *src, size_t nbytes,

enum cudaMemcpyKind direction)

enum cudaMemcpyKind:

  • cudaMemcpyHostToDevice(CPU到GPU)
  • cudaMemcpyDeviceToHost(GPU到CPU)
  • cudaMemcpyDeviceToDevice(GPU到GPU)

第三个编程要点是:怎么用代码表示线程组织模型?

我们可以用dim3类来表示网格和线程块的组织方式,网格grid可以表示为一维和二维格式,线程块block可以表示为一维、二维和三维的数据格式。

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
dim3 DimGrid(100, 50);  //5000个线程块,维度是100*50
dim3 DimBlock(4, 8, 8);  //每个线层块内包含256个线程,线程块内的维度是4*8*8

只听到从架构师办公室传来架构君的声音:

宜尔子孙,蛰蛰兮。有谁来对上联或下联?

接下来介绍一个非常重要又很难懂的一个知识点,我们怎么计算线程号呢?

1.使用N个线程块,每一个线程块只有一个线程,即

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
此代码由Java架构师必看网-架构君整理
dim3 dimGrid(N);
dim3 dimBlock(1);

此时的线程号的计算方式就是

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
threadId = blockIdx.x;

其中threadId的取值范围为0到N-1。对于这种情况,我们可以将其看作是一个列向量,列向量中的每一行对应一个线程块。列向量中每一行只有1个元素,对应一个线程。

2.使用M×N个线程块,每个线程块1个线程

由于线程块是2维的,故可以看做是一个M*N的2维矩阵,其线程号有两个维度,即:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
此代码由Java架构师必看网-架构君整理
dim3 dimGrid(M,N);
dim3 dimBlock(1);

其中

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
blockIdx.x 取值0M-1
blcokIdx.y 取值0N-1

这种情况一般用于处理2维数据结构,比如2维图像。每一个像素用一个线程来处理,此时需要线程号来映射图像像素的对应位置,如

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
pos = blockIdx.y * blcokDim.x + blockIdx.x; //其中gridDim.x等于M

3.使用一个线程块,该线程具有N个线程,即

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
dim3 dimGrid(1);
dim3 dimBlock(N);

此时线程号的计算方式为

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
threadId = threadIdx.x;

其中threadId的范围是0到N-1,对于这种情况,可以看做是一个行向量,行向量中的每一个元素的每一个元素对应着一个线程。

4.使用M个线程块,每个线程块内含有N个线程,即

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
dim3 dimGrid(M);
dim3 dimBlock(N);

这种情况,可以把它想象成二维矩阵,矩阵的行与线程块对应,矩阵的列与线程编号对应,那线程号的计算方式为

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
threadId = threadIdx.x + blcokIdx*blockDim.x;

上面其实就是把二维的索引空间转换为一维索引空间的过程。

5.使用M×N的二维线程块,每一个线程块具有P×Q个线程,即

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
dim3 dimGrid(M, N);
dim3 dimBlock(P, Q);

这种情况其实是我们遇到的最多情况,特别适用于处理具有二维数据结构的算法,比如图像处理领域。

其索引有两个维度

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
threadId.x = blockIdx.x*blockDim.x+threadIdx.x;
threadId.y = blockIdx.y*blockDim.y+threadIdx.y;

上述公式就是把线程和线程块的索引映射为图像像素坐标的计算方法。

CUDA应用例子

我们已经掌握了CUDA编程的基本语法,现在我们开始以一些小例子来真正上手CUDA。

首先我们编写一个程序,查看我们GPU的一些硬件配置情况。

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
#include "device_launch_parameters.h"
#include <iostream>

int main()
{
    int deviceCount;
    cudaGetDeviceCount(&deviceCount);
    for(int i=0;i<deviceCount;i++)
    {
        cudaDeviceProp devProp;
        cudaGetDeviceProperties(&devProp, i);
        std::cout << "使用GPU device " << i << ": " << devProp.name << std::endl;
        std::cout << "设备全局内存总量: " << devProp.totalGlobalMem / 1024 / 1024 << "MB" << std::endl;
        std::cout << "SM的数量:" << devProp.multiProcessorCount << std::endl;
        std::cout << "每个线程块的共享内存大小:" << devProp.sharedMemPerBlock / 1024.0 << " KB" << std::endl;
        std::cout << "每个线程块的最大线程数:" << devProp.maxThreadsPerBlock << std::endl;
        std::cout << "设备上一个线程块(Block)种可用的32位寄存器数量: " << devProp.regsPerBlock << std::endl;
        std::cout << "每个EM的最大线程数:" << devProp.maxThreadsPerMultiProcessor << std::endl;
        std::cout << "每个EM的最大线程束数:" << devProp.maxThreadsPerMultiProcessor / 32 << std::endl;
        std::cout << "设备上多处理器的数量: " << devProp.multiProcessorCount << std::endl;
        std::cout << "======================================================" << std::endl;     
        
    }
    return 0;
}

我们利用nvcc来编译程序。

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
nvcc test1.cu -o test1

输出结果:因为我的服务器是8个TITAN GPU,为了省略重复信息,下面只显示两个GPU结果

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
使用GPU device 0: TITAN X (Pascal)
设备全局内存总量: 12189MB
SM的数量:28
每个线程块的共享内存大小:48 KB
每个线程块的最大线程数:1024
设备上一个线程块(Block)种可用的32位寄存器数量: 65536
每个EM的最大线程数:2048
每个EM的最大线程束数:64
设备上多处理器的数量: 28
======================================================
使用GPU device 1: TITAN X (Pascal)
设备全局内存总量: 12189MB
SM的数量:28
每个线程块的共享内存大小:48 KB
每个线程块的最大线程数:1024
设备上一个线程块(Block)种可用的32位寄存器数量: 65536
每个EM的最大线程数:2048
每个EM的最大线程束数:64
设备上多处理器的数量: 28
======================================================

.......

第一个计算任务:将两个元素数目为1024×1024的float数组相加。

首先我们思考一下如果只用CPU我们怎么串行完成这个任务。

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
#include <iostream>
#include <stdlib.h>
#include <sys/time.h>
#include <math.h>

using namespace std;

int main()
{
    struct timeval start, end;
    gettimeofday( &start, NULL );
    float*A, *B, *C;
    int n = 1024 * 1024;
    int size = n * sizeof(float);
    A = (float*)malloc(size);
    B = (float*)malloc(size);
    C = (float*)malloc(size);

    for(int i=0;i<n;i++)
    {
        A[i] = 90.0;
        B[i] = 10.0;
    }
    
    for(int i=0;i<n;i++)
    {
        C[i] = A[i] + B[i];
    }

    float max_error = 0.0;
    for(int i=0;i<n;i++)
    {
        max_error += fabs(100.0-C[i]);
    }
    cout << "max_error is " << max_error << endl;
    gettimeofday( &end, NULL );
    int timeuse = 1000000 * ( end.tv_sec - start.tv_sec ) + end.tv_usec - start.tv_usec;
    cout << "total time is " << timeuse/1000 << "ms" <<endl;
    return 0;
}

CPU方式输出结果

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
max_error is 0
total time is 22ms

如果我们使用GPU来做并行计算,速度将会如何呢?

编程要点:

  1. 每个Block中的Thread数最大不超过512;
  2. 为了充分利用SM,Block数尽可能多,>100。
代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
#include "cuda_runtime.h"
#include <stdlib.h>
#include <iostream>
#include <sys/time.h>

using namespace std;

__global__ void Plus(float A[], float B[], float C[], int n)
{
    int i = blockDim.x * blockIdx.x + threadIdx.x;
    C[i] = A[i] + B[i];
}

int main()
{
    struct timeval start, end;
    gettimeofday( &start, NULL );
    float*A, *Ad, *B, *Bd, *C, *Cd;
    int n = 1024 * 1024;
    int size = n * sizeof(float);

    // CPU端分配内存
    A = (float*)malloc(size);
    B = (float*)malloc(size);
    C = (float*)malloc(size);

    // 初始化数组
    for(int i=0;i<n;i++)
    {
        A[i] = 90.0;
        B[i] = 10.0;
    }

    // GPU端分配内存
    cudaMalloc((void**)&Ad, size);
    cudaMalloc((void**)&Bd, size);
    cudaMalloc((void**)&Cd, size);

    // CPU的数据拷贝到GPU端
    cudaMemcpy(Ad, A, size, cudaMemcpyHostToDevice);
    cudaMemcpy(Bd, B, size, cudaMemcpyHostToDevice);
    cudaMemcpy(Bd, B, size, cudaMemcpyHostToDevice);

    // 定义kernel执行配置,(1024*1024/512)个block,每个block里面有512个线程
    dim3 dimBlock(512);
    dim3 dimGrid(n/512);

    // 执行kernel
    Plus<<<dimGrid, dimBlock>>>(Ad, Bd, Cd, n);

    // 将在GPU端计算好的结果拷贝回CPU端
    cudaMemcpy(C, Cd, size, cudaMemcpyDeviceToHost);

    // 校验误差
    float max_error = 0.0;
    for(int i=0;i<n;i++)
    {
        max_error += fabs(100.0 - C[i]);
    }

    cout << "max error is " << max_error << endl;

    // 释放CPU端、GPU端的内存
    free(A);
    free(B);
    free(C);
    cudaFree(Ad);
    cudaFree(Bd);
    cudaFree(Cd);
    gettimeofday( &end, NULL );
    int timeuse = 1000000 * ( end.tv_sec - start.tv_sec ) + end.tv_usec - start.tv_usec;
    cout << "total time is " << timeuse/1000 << "ms" <<endl;
    return 0;
}

GPU方式输出结果

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
max error is 0
total time is 1278ms

由上面的例子看出,使用CUDA编程时我们看不到for循环了,因为CPU编程的循环已经被分散到各个thread上做了,所以我们也就看到不到for一类的语句。从结果上看,CPU的循环计算的速度比GPU计算快多了,原因就在于CUDA中有大量的内存拷贝操作(数据传输花费了大量时间,而计算时间却非常少),如果计算量比较小的话,CPU计算会更合适一些。

下面计算一个稍微复杂的例子,矩阵加法,即对两个矩阵对应坐标的元素相加后的结果存储在第三个的对应位置的元素上。

值得注意的是,这个计算任务我采用了二维数组的计算方式,注意一下二维数组在CUDA编程中的写法。

CPU版本

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
#include <stdlib.h>
#include <iostream>
#include <sys/time.h>
#include <math.h>

#define ROWS 1024
#define COLS 1024

using namespace std;

int main()
{
    struct timeval start, end;
    gettimeofday( &start, NULL );
    int *A, **A_ptr, *B, **B_ptr, *C, **C_ptr;
    int total_size = ROWS*COLS*sizeof(int);
    A = (int*)malloc(total_size);
    B = (int*)malloc(total_size);
    C = (int*)malloc(total_size);
    A_ptr = (int**)malloc(ROWS*sizeof(int*));
    B_ptr = (int**)malloc(ROWS*sizeof(int*));
    C_ptr = (int**)malloc(ROWS*sizeof(int*));
    
    //CPU一维数组初始化
    for(int i=0;i<ROWS*COLS;i++)
    {
        A[i] = 80;
        B[i] = 20;
    }
    
    for(int i=0;i<ROWS;i++)
    {
        A_ptr[i] = A + COLS*i;
        B_ptr[i] = B + COLS*i;
        C_ptr[i] = C + COLS*i;
    }
    
    for(int i=0;i<ROWS;i++)
        for(int j=0;j<COLS;j++)
        {
            C_ptr[i][j] = A_ptr[i][j] + B_ptr[i][j];
        }
        
    //检查结果
    int max_error = 0;
    for(int i=0;i<ROWS*COLS;i++)
    {
        //cout << C[i] << endl;
        max_error += abs(100-C[i]);
    }
    
    cout << "max_error is " << max_error <<endl;     
    gettimeofday( &end, NULL );
    int timeuse = 1000000 * ( end.tv_sec - start.tv_sec ) + end.tv_usec - start.tv_usec;
    cout << "total time is " << timeuse/1000 << "ms" <<endl;
    
    return 0;
}

CPU方式输出

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
max_error is 0
total time is 29ms

GPU版本

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
#include "cuda_runtime.h"
#include "device_launch_parameters.h"
#include <sys/time.h> 
#include <stdio.h>
#include <math.h>
#define Row  1024
#define Col 1024
 
 
__global__ void addKernel(int **C,  int **A, int ** B)
{
    int idx = threadIdx.x + blockDim.x * blockIdx.x;
    int idy = threadIdx.y + blockDim.y * blockIdx.y;
    if (idx < Col && idy < Row) {
        C[idy][idx] = A[idy][idx] + B[idy][idx];
    }
}
 
int main()
{
    struct timeval start, end;
    gettimeofday( &start, NULL );

    int **A = (int **)malloc(sizeof(int*) * Row);
    int **B = (int **)malloc(sizeof(int*) * Row);
    int **C = (int **)malloc(sizeof(int*) * Row);
    int *dataA = (int *)malloc(sizeof(int) * Row * Col);
    int *dataB = (int *)malloc(sizeof(int) * Row * Col);
    int *dataC = (int *)malloc(sizeof(int) * Row * Col);
    int **d_A;
    int **d_B;
    int **d_C;
    int *d_dataA;
    int *d_dataB;
    int *d_dataC;
    //malloc device memory
    cudaMalloc((void**)&d_A, sizeof(int **) * Row);
    cudaMalloc((void**)&d_B, sizeof(int **) * Row);
    cudaMalloc((void**)&d_C, sizeof(int **) * Row);
    cudaMalloc((void**)&d_dataA, sizeof(int) *Row*Col);
    cudaMalloc((void**)&d_dataB, sizeof(int) *Row*Col);
    cudaMalloc((void**)&d_dataC, sizeof(int) *Row*Col);
    //set value
    for (int i = 0; i < Row*Col; i++) {
        dataA[i] = 90;
        dataB[i] = 10;
    }
    //将主机指针A指向设备数据位置,目的是让设备二级指针能够指向设备数据一级指针
    //A 和  dataA 都传到了设备上,但是二者还没有建立对应关系
    for (int i = 0; i < Row; i++) {
        A[i] = d_dataA + Col * i;
        B[i] = d_dataB + Col * i;
        C[i] = d_dataC + Col * i;
    }
                                                                
    cudaMemcpy(d_A, A, sizeof(int*) * Row, cudaMemcpyHostToDevice);
    cudaMemcpy(d_B, B, sizeof(int*) * Row, cudaMemcpyHostToDevice);
    cudaMemcpy(d_C, C, sizeof(int*) * Row, cudaMemcpyHostToDevice);
    cudaMemcpy(d_dataA, dataA, sizeof(int) * Row * Col, cudaMemcpyHostToDevice);
    cudaMemcpy(d_dataB, dataB, sizeof(int) * Row * Col, cudaMemcpyHostToDevice);
    dim3 threadPerBlock(16, 16);
    dim3 blockNumber( (Col + threadPerBlock.x - 1)/ threadPerBlock.x, (Row + threadPerBlock.y - 1) / threadPerBlock.y );
    printf("Block(%d,%d)   Grid(%d,%d).\n", threadPerBlock.x, threadPerBlock.y, blockNumber.x, blockNumber.y);
    addKernel << <blockNumber, threadPerBlock >> > (d_C, d_A, d_B);
    //拷贝计算数据-一级数据指针
    cudaMemcpy(dataC, d_dataC, sizeof(int) * Row * Col, cudaMemcpyDeviceToHost);
                                                                                             
    int max_error = 0;
    for(int i=0;i<Row*Col;i++)
    {
        //printf("%d\n", dataC[i]);
        max_error += abs(100-dataC[i]);
    }

    //释放内存
    free(A);
    free(B);
    free(C);
    free(dataA);
    free(dataB);
    free(dataC);
    cudaFree(d_A);
    cudaFree(d_B);
    cudaFree(d_C);
    cudaFree(d_dataA);
    cudaFree(d_dataB);
    cudaFree(d_dataC);

    printf("max_error is %d\n", max_error);
    gettimeofday( &end, NULL );
    int timeuse = 1000000 * ( end.tv_sec - start.tv_sec ) + end.tv_usec - start.tv_usec;
    printf("total time is %d ms\n", timeuse/1000);

    return 0;
}

GPU输出

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
Block(16,16)   Grid(64,64).
max_error is 0
total time is 442 ms

从结果看出,CPU计算时间还是比GPU的计算时间短。这里需要指出的是,这种二维数组的程序写法的效率并不高(虽然比较符合我们的思维方式),因为我们做了两次访存操作。所以一般而言,做高性能计算一般不会采取这种编程方式。

最后一个例子我们将计算一个更加复杂的任务,矩阵乘法

回顾一下矩阵乘法:两矩阵相乘,左矩阵第一行乘以右矩阵第一列(分别相乘,第一个数乘第一个数),乘完之后相加,即为结果的第一行第一列的数,依次往下算,直到计算完所有矩阵元素。

CPU版本

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
#include <iostream>
#include <stdlib.h>
#include <sys/time.h>

#define ROWS 1024
#define COLS 1024

using namespace std;

void matrix_mul_cpu(float* M, float* N, float* P, int width)
{
    for(int i=0;i<width;i++)
        for(int j=0;j<width;j++)
        {
            float sum = 0.0;
            for(int k=0;k<width;k++)
            {
                float a = M[i*width+k];
                float b = N[k*width+j];
                sum += a*b;
            }
            P[i*width+j] = sum;
        }
}

int main()
{
    struct timeval start, end;
    gettimeofday( &start, NULL );
    float *A, *B, *C;
    int total_size = ROWS*COLS*sizeof(float);
    A = (float*)malloc(total_size);
    B = (float*)malloc(total_size);
    C = (float*)malloc(total_size);

    //CPU一维数组初始化
    for(int i=0;i<ROWS*COLS;i++)
    {
        A[i] = 80.0;
        B[i] = 20.0;
    }

    matrix_mul_cpu(A, B, C, COLS);

    gettimeofday( &end, NULL );
    int timeuse = 1000000 * ( end.tv_sec - start.tv_sec ) + end.tv_usec - start.tv_usec;
    cout << "total time is " << timeuse/1000 << "ms" <<endl;

    return 0;
}

CPU输出

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
total time is 7617ms

梳理一下CUDA求解矩阵乘法的思路:因为C=A×B,我们利用每个线程求解C矩阵每个(x, y)的元素,每个线程载入A的一行和B的一列,遍历各自行列元素,对A、B对应的元素做一次乘法和一次加法。

GPU版本

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
#include "cuda_runtime.h"
#include "device_launch_parameters.h"
#include <sys/time.h> 
#include <stdio.h>
#include <math.h>
#define Row  1024
#define Col 1024

 
__global__ void matrix_mul_gpu(int *M, int* N, int* P, int width)
{
    int i = threadIdx.x + blockDim.x * blockIdx.x;
    int j = threadIdx.y + blockDim.y * blockIdx.y;
                
    int sum = 0;
    for(int k=0;k<width;k++)
    {
        int a = M[j*width+k];
        int b = N[k*width+i];
        sum += a*b;
    }
    P[j*width+i] = sum;
}
 
int main()
{
    struct timeval start, end;
    gettimeofday( &start, NULL );

    int *A = (int *)malloc(sizeof(int) * Row * Col);
    int *B = (int *)malloc(sizeof(int) * Row * Col);
    int *C = (int *)malloc(sizeof(int) * Row * Col);
    //malloc device memory
    int *d_dataA, *d_dataB, *d_dataC;
    cudaMalloc((void**)&d_dataA, sizeof(int) *Row*Col);
    cudaMalloc((void**)&d_dataB, sizeof(int) *Row*Col);
    cudaMalloc((void**)&d_dataC, sizeof(int) *Row*Col);
    //set value
    for (int i = 0; i < Row*Col; i++) {
        A[i] = 90;
        B[i] = 10;
    }
                                                                
    cudaMemcpy(d_dataA, A, sizeof(int) * Row * Col, cudaMemcpyHostToDevice);
    cudaMemcpy(d_dataB, B, sizeof(int) * Row * Col, cudaMemcpyHostToDevice);
    dim3 threadPerBlock(16, 16);
    dim3 blockNumber((Col+threadPerBlock.x-1)/ threadPerBlock.x, (Row+threadPerBlock.y-1)/ threadPerBlock.y );
    printf("Block(%d,%d)   Grid(%d,%d).\n", threadPerBlock.x, threadPerBlock.y, blockNumber.x, blockNumber.y);
    matrix_mul_gpu << <blockNumber, threadPerBlock >> > (d_dataA, d_dataB, d_dataC, Col);
    //拷贝计算数据-一级数据指针
    cudaMemcpy(C, d_dataC, sizeof(int) * Row * Col, cudaMemcpyDeviceToHost);
                                                                                             
    //释放内存
    free(A);
    free(B);
    free(C);
    cudaFree(d_dataA);
    cudaFree(d_dataB);
    cudaFree(d_dataC);

    gettimeofday( &end, NULL );
    int timeuse = 1000000 * ( end.tv_sec - start.tv_sec ) + end.tv_usec - start.tv_usec;
    printf("total time is %d ms\n", timeuse/1000);

    return 0;
}

GPU输出

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
Block(16,16)   Grid(64,64).
total time is 506 ms

从这个矩阵乘法任务可以看出,我们通过GPU进行并行计算的方式仅花费了0.5秒,但是CPU串行计算方式却花费了7.6秒,计算速度提升了十多倍,可见并行计算的威力!

今天文章到此就结束了,感谢您的阅读,Java架构师必看祝您升职加薪,年年好运。

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2022-03-212,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
OpenCV二维Mat数组(二级指针)在CUDA中的使用
  CUDA用于并行计算非常方便,但是GPU与CPU之间的交互,比如传递参数等相对麻烦一些。在写CUDA核函数的时候形参往往会有很多个,动辄达到10-20个,如果能够在CPU中提前把数据组织好,比如使用二维数组,这样能够省去很多参数,在核函数中可以使用二维数组那样去取数据简化代码结构。当然使用二维数据会增加GPU内存的访问次数,不可避免会影响效率,这个不是今天讨论的重点了。   举两个代码栗子来说明二维数组在CUDA中的使用(亲测可用): 1. 普通二维数组示例: 输入:二维数组A(8行4列) 输出:二维数
一棹烟波
2018/01/12
3.3K0
OpenCV二维Mat数组(二级指针)在CUDA中的使用
快来操纵你的GPU| CUDA编程入门极简教程
2006年,NVIDIA公司发布了CUDA(http://docs.nvidia.com/cuda/),CUDA是建立在NVIDIA的CPUs上的一个通用并行计算平台和编程模型,基于CUDA编程可以利用GPUs的并行计算引擎来更加高效地解决比较复杂的计算难题。近年来,GPU最成功的一个应用就是深度学习领域,基于GPU的并行计算已经成为训练深度学习模型的标配。目前,最新的CUDA版本为CUDA 9。
机器学习算法工程师
2018/07/27
5.1K0
快来操纵你的GPU| CUDA编程入门极简教程
CUDA编程之线程模型
一个kernel结构如下:Kernel<<>>(param1, param2, …)
AI异构
2020/07/29
2.8K0
CUDA编程之线程模型
浅析GPU计算——cuda编程
        在《浅析GPU计算——CPU和GPU的选择》一文中,我们分析了在遇到什么瓶颈时需要考虑使用GPU去进行计算。本文将结合cuda编程来讲解实际应用例子。(转载请指明出于breaksoftware的csdn博客)
方亮
2019/01/16
2.6K0
为什么深度学习模型在GPU上运行更快?
当前,提到深度学习,我们很自然地会想到利用GPU来提升运算效率。GPU最初是为了加速图像渲染和2D、3D图形处理而设计的。但它们强大的并行处理能力,使得它们在深度学习等更广泛的领域中也发挥了重要作用。
数据科学工厂
2024/07/05
1900
为什么深度学习模型在GPU上运行更快?
AI部署篇 | CUDA学习笔记1:向量相加与GPU优化(附CUDA C代码)
GPU并不是一个独立运行的计算平台,而需要与CPU协同工作,也可以把GPU看成是CPU的协处理器,因此当在说GPU并行计算时,其实是指的基于CPU+GPU的异构计算架构。在异构计算架构中,GPU与CPU通过PCIe总线连接在一起进行协同工作,CPU所在位置称为为主机端(host),而GPU所在位置称为设备端(device),如下图所示。
集智书童公众号
2022/01/05
2.8K0
AI部署篇 | CUDA学习笔记1:向量相加与GPU优化(附CUDA C代码)
CUDA并行编程概述
CUDA是英伟达推出的GPU架构平台,通过GPU强大的并行执行效率,为计算密集型应用加速,CUDA文件以.cu结尾,支持C++语言编写,在使用CUDA前需要下载 CUDA Toolkit
DearXuan
2022/01/19
8430
积分图实现均值滤波的CUDA代码
没想到我2010年买的笔记本显卡GT330M 竟然还能跑CUDA,果断小试了一把,环境为CUDA6.5+VS2012,写了一个积分图实现均值滤波。类似于OpenCV的blur()函数。 使用lena.
一棹烟波
2018/01/12
1.9K0
积分图实现均值滤波的CUDA代码
【参加CUDA线上训练营】--CUDA编程模型线程组织
GPU在管理线程的时候是以block为单元调度到SM上执行,每个block中以warp作为一次执行的单位,每个warp包括32个线程。
云帆沧海
2024/01/17
2030
【参加CUDA线上训练营】--CUDA编程模型线程组织
CUDA-入门(转)
CUDA,Compute Unified Device Architecture的简称,是由NVIDIA公司创立的基于他们公司生产的图形处理器GPUs(Graphics Processing Units,可以通俗的理解为显卡)的一个并行计算平台和编程模型。
祝你万事顺利
2019/06/03
1.7K0
CUDA 02 - 逻辑模型
CUDA逻辑模型是异构模型, 需要CPU和GPU协同工作. 在CUDA中, host和device是两个重要概念, host是指CPU及其内存, device是指GPU及其内存. 典型的CUDA程序的执行流程如下:
Reck Zhang
2021/08/11
5290
CUDA 02 - 逻辑模型
2020-10-21CUDA从入门到精通
在老板的要求下,本博主从2012年上高性能计算课程开始接触CUDA编程,随后将该技术应用到了实际项目中,使处理程序加速超过1K,可见基于图形显示器的并行计算对于追求速度的应用来说无疑是一个理想的选择。还有不到一年毕业,怕是毕业后这些技术也就随毕业而去,准备这个暑假开辟一个CUDA专栏,从入门到精通,步步为营,顺便分享设计的一些经验教训,希望能给学习CUDA的童鞋提供一定指导。个人能力所及,错误难免,欢迎讨论。
爱笑的架构师
2020/10/28
7280
2020-10-21CUDA从入门到精通
英伟达CUDA架构核心概念及入门示例
理解英伟达CUDA架构涉及几个核心概念,这些概念共同构成了CUDA并行计算平台的基础。 1. SIMT(Single Instruction Multiple Thread)架构 CUDA架构基于SIMT模型,这意味着单个指令可以被多个线程并行执行。每个线程代表了最小的执行单位,而线程被组织成线程块(Thread Block),进一步被组织成网格(Grid)。这种层级结构允许程序员设计高度并行的算法,充分利用GPU的并行计算核心。 2. 层级结构 - 线程(Threads): 执行具体计算任务的最小单位。 - 线程块(Thread Blocks): 一组线程,它们共享一些资源,如共享内存,并作为一个单元被调度。 - 网格(Grid): 包含多个线程块,形成执行任务的整体结构。 3. 内存模型 - 全局内存: 所有线程均可访问,但访问速度相对较慢。 - 共享内存: 位于同一线程块内的线程共享,访问速度快,常用于减少内存访问延迟。 - 常量内存和纹理内存: 优化特定类型数据访问的内存类型。 - 寄存器: 最快速的存储,每个线程独有,但数量有限。 4. 同步机制 屏蔽同步(Barrier Synchronization) 通过同步点确保线程块内或网格内的所有线程达到某个执行点后再继续,保证数据一致性。 5. CUDA指令集架构(ISA) CUDA提供了专门的指令集,允许GPU执行并行计算任务。这些指令针对SIMT架构优化,支持高效的数据并行操作。 6. 编程模型 CUDA编程模型允许开发者使用C/C++等高级语言编写程序,通过扩展如`__global__`, `__device__`等关键字定义GPU执行的函数(核函数,kernel functions)。核函数会在GPU上并行执行,而CPU代码负责调度这些核函数并在CPU与GPU之间管理数据传输。 7. 软件栈 CUDA包含一系列工具和库,如nvcc编译器、CUDA runtime、性能分析工具、数学库(如cuFFT, cuBLAS)、深度学习库(如cuDNN)等,为开发者提供了完整的开发环境。
用户7353950
2024/07/05
5010
英伟达CUDA架构核心概念及入门示例
CUDA—使用GPU暴力激活成功教程密码
GPU支持大规模的并行加速运算,胜在量上,CPU处理大量的并行运算显得力不从心,它是胜在逻辑上。利用显卡加速的应用越来越多,但如果说GPU即将或最终将替代CPU还有点言过其实,二者最终将优势互补,各尽所能。
全栈程序员站长
2022/09/23
5100
CUDA—使用GPU暴力激活成功教程密码
【AI系统】从 CUDA 对 AI 芯片思考
从技术的角度重新看英伟达生态,有很多值得借鉴的方面。本文将主要从流水编排、SIMT 前端、分支预测和交互方式等方面进行分析,同时对比 DSA 架构,思考可以从英伟达 CUDA 中借鉴的要点。
用户11307734
2024/11/27
1120
Udacity并行计算课程笔记-The GPU Programming Model
一、传统的提高计算速度的方法 faster clocks (设置更快的时钟) more work over per clock cycle(每个时钟周期做更多的工作) more processors(更多处理器) 二、CPU & GPU CPU更加侧重执行时间,做到延时小 GPU则侧重吞吐量,能够执行大量的计算 更形象的理解就是假如我们载一群人去北京,CPU就像那种敞篷跑车一样速度贼快,但是一次只能坐两个人,而GPU就像是大巴车一样,虽然可能速度不如跑车,但是一次能载超多人。 总结起来相比于CPU,GPU有
marsggbo
2018/01/23
1.2K0
Udacity并行计算课程笔记-The GPU Programming Model
【AI系统】SIMD & SIMT 与芯片架构
为了进一步探讨 SIMD/SIMT 与 AI 芯片之间的关系,本文将详细介绍 SIMD 单指令多数据和 SIMT 单指令多线程的计算本质,以及对 NVIDIA CUDA 底层实现 SIMD/SIMT 的原理进行讲解。
用户11307734
2024/11/27
1460
《GPU高性能编程 CUDA实战》(CUDA By Example)读书笔记
写在最前 这本书是2011年出版的,按照计算机的发展速度来说已经算是上古书籍了,不过由于其简单易懂,仍旧被推荐为入门神书。先上封面: 由于书比较老,而且由于学习的目的不同,这里只介绍了基础
用户1148523
2018/01/09
2.9K0
《GPU高性能编程 CUDA实战》(CUDA By Example)读书笔记
关于图像的二维卷积各种版本的实现(C++,Cuda和mex)
该文介绍了利用卷积核对图像进行处理的一种方法,包括其原理、实现步骤和代码示例。
码科智能
2018/01/02
2.9K0
CUDA编程(机械编程)
参考了很多大神的内容,并非完全原创,只是为了查漏补缺,记录自己的学习过程。个人水平有限,错误难免,欢迎讨论。
全栈程序员站长
2022/08/01
1.1K0
CUDA编程(机械编程)
相关推荐
OpenCV二维Mat数组(二级指针)在CUDA中的使用
更多 >
LV.1
这个人很懒,什么都没有留下~
目录
  • 1. GPU架构特点
  • 2. CUDA线程模型
  • 3. CUDA内存模型
  • 4. CUDA编程模型
    • 1.使用N个线程块,每一个线程块只有一个线程,即
    • 2.使用M×N个线程块,每个线程块1个线程
    • 3.使用一个线程块,该线程具有N个线程,即
    • 4.使用M个线程块,每个线程块内含有N个线程,即
    • 5.使用M×N的二维线程块,每一个线程块具有P×Q个线程,即
  • CUDA应用例子
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档