暂无搜索历史
凡本公众号注明“来源:XXX(非集智书童)”的作品,均转载自其它媒体,版权归原作者所有,如有侵权请联系我们删除,谢谢。
AI模型部署落地实战👉「CUDA、TensorRT、NCNN、OpenVINO、MNN、ONNXRuntime以及地平线框架」
智能交通系统(ITS)有望通过提高安全性、优化交通流量、减少车辆排放和燃油消耗以及提供信息娱乐服务来 Reshape 流动性。这种转变得益于机器学习(ML)和车...
三维实例分割是计算机视觉任务,涉及预测三维点云场景中单个目标的 Mask 。它在机器人学和增强现实等领域具有重要意义。由于其在多样化应用中的重要性,近年来这一任...
在现代社会,个人信息安全问题越来越受到关注,因为误识别可能对个人的财产安全和隐私造成灾难性的影响。基于密码和身份证等 Token 的认证方法存在被遗忘或被盗的风...
多模态大模型(LVLMs)取得了快速的进展,在处理视觉信息方面展现出了很强的感知和推理能力。然而,当面对不同规模解空间的问题时,LVLMs 在相同知识点上并不总...
卷积神经网络在过去十年中彻底改变了计算机视觉应用,使得诸如目标检测、图像分割和实例分割等任务得以解决。尽管近年来卷积网络 Backbone 有所改进,甚至在某些...
多目标跟踪(MOT)是计算机视觉领域的一项重要技术,在移动机器人、自动驾驶(Sun等人,2020)和体育分析(Zhao等人,2023)等应用中发挥着重要作用。随...
大规模视觉 Transformer (ViT)模型已经在广泛的下游视觉任务中展示出强大的泛化能力。将这些模型适配到特定任务的普遍方法是遵循先预训练后微调的范式,...
异常检测是计算机视觉和深度学习领域中高度研究的领域,其应用包括缺陷检测[1, 2],视觉检查,产品质量控制,医学成像等。这需要在低资源环境下的精确度和延迟约束之...
多模态对比学习方法(如CLIP [39])在各类下游任务中展现出了令人印象深刻的零样本分类性能,由于它们能有效对不同模态的表示进行对齐,因此在开放词汇目标检测[...
大规模预训练文本到图像扩散模型的进展导致了成功生成具有复杂性和对输入条件高保真的图像。特别是基于 Transformer 架构的扩散模型的出现,在这一研究领域中...
尽管基于深度学习的方法在语义分割方面取得了显著的成就,但这些方法常常需要大量的逐像素标注数据。
自从Vision Transformer(ViT)[12]问世以来,它由于其在建模长距离依赖方面的卓越能力而吸引了研究界的广泛关注。然而,作为ViT核心的自注意...
计算机视觉任务,如语义分割[5, 30, 33, 55]和深度估计[2, 38],已经通过深度学习技术得到了显著促进。每个视觉任务都有其精细的深度模型,这些模型...
实时目标检测一直是计算机视觉研究领域的一个重点,旨在在低延迟下准确预测图像中物体的类别和位置。它被广泛应用于各种实际应用中,包括自动驾驶,机器人导航,物体跟踪等...
数据增强(DA)是减轻深度神经网络训练过程中过拟合的一种关键且非常有效的技术,这导致了更一般化和可靠的模型。然而,需要注意的是,现有的DA方法主要依赖于在训练过...
暂未填写个人简介
暂未填写技能专长
暂未填写学校和专业
暂未填写个人网址
暂未填写所在城市