真皮专栏

25 篇文章
13 人订阅

全部文章

真皮先生

Sort Algorithm

生成随机的n个数量的数组,输出数组每一个元素的内容。测试排序算法使用的标准就是运行时间和排序的正确性,所以需要一个验证正确性和计算排序时间的:

372
真皮先生

Recommended System

推荐系统的核心问题就在于为用户推荐与其兴趣相似度比较高的商品。比如在微博上,用户至上想打发时间,并不是想准确的查看某条信息,在首页中查看每一条微博,为了帮助他筛...

722
真皮先生

Label Propagation

Label propagation是基于标传播的一种社区划分算法。Label Propagation Algorithm简称LPA算法,也可以是说是一种划分小团...

744
真皮先生

Optimization of Machine Learning

机器学习就是需要找到模型的鞍点,也就是最优点。因为模型很多时候并不是完全的凸函数,所以如果没有好的优化方法可能会跑不到极值点,或者是局部极值,甚至是偏离。所以选...

552
真皮先生

python基本常识

tuple,str都可以看做是一种list,都可以进行切片操作。 利用切片操作,去掉一个字符串的前后空格。要注意是是前后空格是不止一个的,可能有很多个。

785
真皮先生

linear regression and logistic regression

通过工资和年龄预测额度,这样就可以做拟合来预测了。有两个特征,那么就要求有两个参数了,设置

981
真皮先生

聚类算法

p=2时就说平时计算的几何距离,当p趋向于正无穷的时候,其实求的就不是x,y的距离了,而是求x y中最长的一个了。因为如果x大于y,在指数增长下x回远大于y,所...

792
真皮先生

The Optimization of the Adaboost and Gradient Boosted Decision Tree

再回到我们上篇文章讲到的Adaboost算法,我们要从Adaboost算法推导出GBDT。首先回顾一下上篇文章的Adaboost,主要思想就是把弱分类器集中起来...

642
真皮先生

支持向量机(Support Vector Machine)支持向量机

linear regression , perceptron learning algorithm , logistics regression都是分类器,我们...

832
真皮先生

Decision Tree

回顾上一篇文章讲到的聚合模型,三个臭皮匠顶一个诸葛亮。于是出现了blending,bagging,boost,stacking。blending有uniform...

731
真皮先生

机器学习可行性与VC dimension

在银行评估贷款申请人的授信请求前,会进行风险评估。符合申请则通过,反之驳回。长时间的数据和申请使得银行从中找到了一些规律并开始learning,所以风险评估就是...

713
真皮先生

Neural Network

重新回顾一下一开始学的PLA,preceptron learning Algorithm。PLA适用于二维及高维的线性可分的情况,如果是非线性可分的数据,如果使...

681
真皮先生

Softmax ClassifierSoftmax Classifier

softmax分类器和logistics regression有点像,softmax其实就是从logistics发张过来的。由于是多分类了,需要走更多的概率来表...

511
真皮先生

Random Forest

随机森林还是没有脱离聚合模型这块,之前学过两个aggregation model,bagging和decision tree,一个是边learning边unif...

872
真皮先生

Factorization MachineFactorization Machine---因子分解机

logistics regression algorithm model中使用的是特征的线性组合,最终得到的分割平面属于线性模型,但是线性模型就只能处理线性问题...

992
真皮先生

Sort Algorithm排序算法

第一次迭代,寻找0到6个下标的数字哪个是最小的,找到最小的就和第一个交换,也就是2。第一次遍历所有

331
真皮先生

Aggregation Model : Blending , Bagging , Boosting

比如现在有一支股票,你不知道是跌还是涨。你有T个friends,每一个friend对应的建议分别是g1,g2,g3...gn,那么你应该怎么选择建议?

932
真皮先生

EM Algorithm

EM算法和之前学的都不太一样,EM算法更多的是一种思想,所以后面用几个例子讲解,同时也会重点讲解GMM高斯混合模型。

1364
真皮先生

Radial Basis Function Network

使用高斯核函数方式把数据维度扩展到无限维度进而得到一条粗壮的分界线。仔细看一下这个分割函数,其实就是一些Gaussian函数的线性组合,y就是增长的方向。 ...

931
真皮先生

Some methods of deep learning and dimensionality reduction

上一篇主要是讲了全连接神经网络,这里主要讲的就是深度学习网络的一些设计以及一些权值的设置。神经网络可以根据模型的层数,模型的复杂度和神经元的多少大致可以分成两类...

591

扫码关注云+社区