sklearn是一个Python第三方提供的非常强力的机器学习库,scikit-learn可以极大的节省我们编写代码的时间以及减少我们的代码量,使我们有更多的精力去分析数据分布,调整模型和修改超参。
今天给大家分享如何基于机器学习建模全能包scikit-learn进行特征工程feature-engineering。
在数据科学和机器学习领域,Python以其简洁的语法和强大的库支持,成为了许多开发者和研究者的首选语言。而在众多Python机器学习库中,scikit-lear...
腾讯云TDP | KOL (已认证)
随着机器学习在各个领域的广泛应用,Python成为了一个备受欢迎的机器学习工具之一。在众多机器学习库中,Scikit-learn因其简单易用、功能强大而备受青睐...
图解机器学习 本文详解 scikit-learn 工具库的用法,覆盖机器学习基础知识、SKLearn讲解、SKLearn三大核心API、SKLearn高级AP...
如果您是机器学习的新手,您可能会对这两者感到困惑——Label 编码器和 One-Hot 编码器。这两个编码器是 Python 中 SciKit Learn 库...
一般情况下训练集大小通常设置为观察总数的70%,可以使用scikit-learn中的train_test_split函数应用Holdout。
交叉验证应用于时间序列需要注意是要防止泄漏和获得可靠的性能估计本文将介绍蒙特卡洛交叉验证。这是一种流行的TimeSeriesSplits方法的替代方法。
腾讯 | 后端开发 (已认证)
查看scikit-learn当前版本import sklearnprint("Sklearn verion is {}".format(sklearn.__ve...
特征工程本质是一项工程活动,它目的是最大限度地从原始数据中提取并加工特征以供模型或者算法使用。在传统机器学习领域流传着这样一句话: “数据和特征决定了机器学习的...
对比了六大模型,可以看出,逻辑回归速度最快,但准确率最低。而LightGBM,速度快,而且准确率最高,所以,现在处理结构化数据的时候,大部分都是用LightGB...
CSDN 叶庭云:https://yetingyun.blog.csdn.net/
而一些常用的机器学习框架,比如scikit-learn, tensorflow, pyrorch等,已经做了大量的优化,不适合再使用Numba做加速。
数据集 cruise.csv 包含了船的吨位、大小、乘客密度、船员数量等特征,业务需要建立一个船员数量与其他相关特征的回归模型,从而能估计船员数量。
在 Keras 中,我们可以通过在我们的网络架构中添加Dropout层来实现丢弃。 每个Dropout层将丢弃每批中的一定数量的上一层单元,它是由用户定义的超参...
在 scikit-learn 中,必须在训练模型时生成预测概率。 这可以通过将SVC的probability设置为True来完成。 在训练模型之后,我们可以使用...
: 研究者指定的正数。 K 表示最接近特定观测的观测数,它定义了“邻域”。 例如,K = 2意味着每个观测都有一个邻域,包含最接近它的另外两个观测。
表示两者之间的交互。使用 scikit-learn 的PolynomialFeatures,来为所有特征组合创建交互术项会很有用。 然后,我们可以使用模型选择策...
scikit-learn 的LogisticRegression提供了许多用于训练逻辑回归的技术,称为求解器。 大多数情况下,scikit-learn 会自动为...