线性回归是利用称为线性回归方程的最小二乘函数对一个或多个自变量和因变量之间关系进行建模的一种回归分析。
本文建立偏最小二乘法(PLS)回归(PLSR)模型,以及预测性能评估。为了建立一个可靠的模型,我们还实现了一些常用的离群点检测和变量选择方法,可以去除潜在的离群...
本文通过一个简单的例子,介绍一下机器学习中偏差(Bias)和方差(Variance)的概念。
由于P= 2.2e-16<0.05,于是在显著性水平ɑ=0.05上拒绝H0,接受H1,可认为单机游戏——游戏区中视频投币数和视频收藏量呈现正的线性关系。
NA_Sales,EU_Sales,JP_Sales作为数据集,每条数据的Global_Sales作为target建立回归模型
在这文中,我将介绍非线性回归的基础知识。非线性回归是一种对因变量和一组自变量之间的非线性关系进行建模的方法。最后我们用R语言非线性模型预测个人工资数据是否每年收...
汽车共享”最早出现于上个世纪四十年代的瑞士,他们发明了“自驾车合作社”,后来日本、英国等国争相效仿,但都未形成规模。而今,共享经济通过互联网达到了一个新的高度,...
机器学习人人都在谈论,但除了老师们知根知底外,只有很少的人能说清楚怎么回事。如果阅读网上关于机器学习的文章,你很可能会遇到两种情况:充斥各种定理的厚重学术三部曲...
在本文中,我将重点介绍使用集成嵌套 拉普拉斯近似方法的贝叶斯推理。可以估计贝叶斯 层次模型的后边缘分布。鉴于模型类型非常广泛,我们将重点关注用于分析晶格数据的空...
最近我们被客户要求撰写关于预测心脏病数据的研究报告,包括一些图形和统计输出。 本报告是对心脏研究的机器学习/数据科学调查分析。更具体地说,我们的目标是在心脏研究...
阿里 · 算法工程师 (已认证)
题目出自阿里天池赛题链接:零基础入门数据挖掘 - 二手车交易价格预测-天池大赛-阿里云天池
线性回归(Linear Regression)可能是最流行的机器学习算法。线性回归就是要找一条直线,并且让这条直线尽可能地拟合散点图中的数据点。它试图通过将直线...
可以看到各个自变量与因变量之间的线性关系并不显著,只有EDU变量达到了0.01的显著性水平,因此对模型进行修改,使用逐步回归法对模型进行修改。
我们正和一位朋友讨论如何在R软件中用GLM模型处理全国的气候数据。本文获取了全国的2021年全国的气候数据。
最近我们被客户要求撰写关于地区经济研究分析的研究报告,包括一些图形和统计输出。 建立重庆市经济指标发展体系,以重庆市一小时经济圈作为样本,运用因子分析方法进行实...
在竞赛中如果对多个预测结果进行集成,最方便的做法是直接对预测结果进行加权求和。此时不同任务,加权方法不同:
数据集 cruise.csv 包含了船的吨位、大小、乘客密度、船员数量等特征,业务需要建立一个船员数量与其他相关特征的回归模型,从而能估计船员数量。
在这文中,我将介绍非线性回归的基础知识。非线性回归是一种对因变量和一组自变量之间的非线性关系进行建模的方法。最后我们用R语言非线性模型预测个人工资数据(查看文末...
1.简答题 请打开:资料–课 程所用数据一- Incomregression.csv 利用该csv文件中的数据,选择一种python编 译器编写pyth...
扫码关注腾讯云开发者
领取腾讯云代金券