暂无搜索历史
https://arxiv.org/pdf/2301.05586.pdfhttps://github.com/meituan/YOLOv6
本文全名Searching for Network Width with Bilaterally Coupled Network, 简称BCNetV2,目前已发...
https://github.com/tinyvision/damo-yolo (上图源自官网)
本文旨在通过充分利用卷积探索一种更高效的编码空域特征的方式:通过组合ConvNet与ViT的设计理念,本文利用卷积调制操作对自注意力进行了简化,进而构建了一种新...
特别设计了一种新颖的轻量级面向检测的 Transformer 主干,它基于精心设计的消融研究有效地捕获具有丰富语义的低级特征。在 MS COCO 基准上进行的大...
MobileOne(≈MobileNetV1+RepVGG+训练Trick)是由Apple公司提出的一种基于iPhone12优化的超轻量型架构,在ImageNe...
退化模型在盲图像超分中起着非常重要的作用,经典的退化模型近聚焦于模糊导致其在现实场景的应用能力有限。BSRGAN与Real-ESRGAN的实用性退化模型为盲图像...
前段时间,何恺明团队提出MAE在CV届引起极大轰动,自上传到arxiv之后,各种"YYDS", "Best Paper预定"等,关于MAE的介绍可参考以下两个介...
近年来,Efficient Super-Resolution(ESR)的研究主要聚焦于参数量与FLOPs的降低,这些方案往往通过复杂的层连接策略进行特征聚合(比...
尽管Transformer已在图像超分领域取得了令人惊讶的性能,但从感受野角度来看:Transformer的潜力仍为得到充分挖掘。
本文对重参数设计理念进行了重审视,对重参数超分网络的关键成分进行了调查。我们发现:BN层有助于引入训练非线性能力并改善模型性能(这与OREPA一文的出发点相同)...
今天介绍一篇NTIRE2022 Efficient Super Resolution竞赛方案,该方案取得了最低内存占用、第二快的推理速度。推理耗时与内存占用是E...
在正式介绍MIRNetV2之前,我们先来看一下它与MIRNetV1的性能对比,见下表。真可谓,MIRNetV2把MIRNetV1放在地上使劲的“摩擦”!关于MI...
但如果能有一个软件可以实现智能全自动抠图,完美保留发丝、树叶等精细边缘,还完全免费,甚至代码都是全部开源的,它不香嘛!!!
https://arxiv.org/pdf/2203.09195.pdf https://github.com/csjliang/LDL
行人检测、行为分析、跨镜跟踪、属性识别等能力在工业、安防、金融、能源等行业中可谓是核心财富密码!一套综合目标检测、跟踪、关键点检测等能力的开源实时行人分析工具,...
从MAP(Maximum A Posteriori)角度出发,盲图像降噪可以描述为如下优化问题:
本文提出一种超简基线方案Baseline,它不仅计算高效同时性能优于之前SOTA方案;在所得Baseline基础上进一步简化得到了NAFNet:移除了非线性激活...
自从BasicVSR提出以来,双向信息流传播已成为视频复原(尤其是视频超分)的标配,不仅取得了NTIRE2021视频增强相关竞赛的冠军,同时基于该思路的方案还取...
尽管通过特征下采样获取多尺度特征融合是一种有效改善视觉识别性能的方案,但是特征下采样对于图像超分一种是反直觉的行为,这是因为超分需要将低分辨率输入映射到高分辨率...
暂未填写公司和职称
暂未填写学校和专业
暂未填写个人网址
暂未填写所在城市
扫码关注腾讯云开发者
领取腾讯云代金券