与这个问题here相关,但为了清楚起见,我决定问另一个问题,因为“新”问题与原来的问题没有直接关系。简而言之,我使用ddply对三年中的每一年累加一个值。我的代码从第一年获取数据,并在列的第二和第三年的行中重复。我的猜测是,每个1年期的数据块都被复制到整个列中,但我不明白为什么。
问:如何才能在指定列的正确行中获得每年的累加值?
编辑: for循环或类似的循环很重要,因为我最终希望根据列名列表自动计算新列,而不是手动计算每个新列。循环遍历列名列表。
我经常使用ddply和cumsum组合,所以突然出现问题是相当令人烦恼的。
编辑:此代码已更新为我确定的解决方案,它基于@Chase的答案如下
require(lubridate)
require(plyr)
require(xts)
require(reshape)
require(reshape2)
set.seed(12345)
# create dummy time series data
monthsback <- 24
startdate <- as.Date(paste(year(now()),month(now()),"1",sep = "-")) - months(monthsback)
mydf <- data.frame(mydate = seq(as.Date(startdate), by = "month", length.out = monthsback),
myvalue1 = runif(monthsback, min = 600, max = 800),
myvalue2 = runif(monthsback, min = 1900, max = 2400),
myvalue3 = runif(monthsback, min = 50, max = 80),
myvalue4 = runif(monthsback, min = 200, max = 300))
mydf$year <- as.numeric(format(as.Date(mydf$mydate), format="%Y"))
mydf$month <- as.numeric(format(as.Date(mydf$mydate), format="%m"))
# Select columns to process
newcolnames <- c('myvalue1','myvalue4','myvalue2')
# melt n' cast
mydf.m <- mydf[,c('mydate','year',newcolnames)]
mydf.m <- melt(mydf.m, measure.vars = newcolnames)
mydf.m <- ddply(mydf.m, c("year", "variable"), transform, newcol = cumsum(value))
mydf.m <- dcast(mydate ~ variable, data = mydf.m, value.var = "newcol")
colnames(mydf.m) <- c('mydate',paste(newcolnames, "_cum", sep = ""))
mydf <- merge(mydf, mydf.m, by = 'mydate', all = FALSE)
mydf
发布于 2012-05-10 14:43:58
我真的不理解你的for循环,但是你是不是把事情搞得过于复杂了?你不能直接使用transform
和ddply
吗
#Make sure it's ordered properly
mydf <- mydf[order(mydf$year, mydf$month),]
#Use ddply to calculate the cumsum by year:
ddply(mydf, "year", transform,
cumsum1 = cumsum(myvalue1),
cumsum2 = cumsum(myvalue2))
#----------
mydate myvalue1 myvalue2 year month cumsum1 cumsum2
1 2010-05-01 744.1808 264.4543 2010 5 744.1808 264.4543
2 2010-06-01 775.1546 238.9828 2010 6 1519.3354 503.4371
3 2010-07-01 752.1965 269.8544 2010 7 2271.5319 773.2915
....
9 2011-01-01 745.5411 218.7712 2011 1 745.5411 218.7712
10 2011-02-01 797.9474 268.1834 2011 2 1543.4884 486.9546
11 2011-03-01 606.9071 237.0104 2011 3 2150.3955 723.9650
...
21 2012-01-01 690.7456 225.9681 2012 1 690.7456 225.9681
22 2012-02-01 665.3505 232.1225 2012 2 1356.0961 458.0906
23 2012-03-01 793.0831 206.0195 2012 3 2149.1792 664.1101
编辑-这是未经测试的,因为我在这台机器上没有R,但这是我的想法:
require(reshape2)
mydf.m <- melt(mydf, measure.vars = newcolnames)
mydf.m <- ddply(mydf.m, c("year", "variable"), transform, newcol = cumsum(value))
dcast(mydate + year + month ~ variable, data = mydf.m, value.var = "newcol")
https://stackoverflow.com/questions/10536295
复制相似问题