Loading [MathJax]/jax/input/TeX/config.js
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
社区首页 >问答首页 >使用R语言进行机器学习特征选择①?

使用R语言进行机器学习特征选择①?

提问于 2020-09-03 09:41:07
回答 1关注 0查看 682

“自动特征选择用于构建不同子集的许多模型,识别哪些特征有助于构建准确模型,哪些特征没什么帮助。特征选择的一个流行的自动方法称为 递归特征消除(Recursive Feature Elimination)或RFE。 下例在Pima Indians Diabetes数据集上提供RFE方法例子。随机森林算法用于每一轮迭代中评估模型的方法。该算法用于探索所有可能的特征子集。从图中可以看出当使用5个特征时即可获取与最高性能相差无几的结果。”

博主您好,我是一个R语言小白,最近在学习随机森林,我看您在“使用R语言进行机器学习特征选择①”这篇博文中的第三部分提到了“随机森林算法用于每一轮迭代中评估模型的方法”,可是我看不出来您哪一步用的是随机森林的命令,期待得到您的回复,给您添麻烦了,谢谢!

回答 1

找虫虫

发布于 2020-09-04 07:07:55

https://cloud.tencent.com/developer/article/1354569

是这篇文章吗?可以前往作者专栏文章底部留言提问喔!

和开发者交流更多问题细节吧,去 写回答
相关文章
使用R语言进行机器学习特征选择①
特征选择是实用机器学习的重要一步,一般数据集都带有太多的特征用于模型构建,如何找出有用特征是值得关注的内容。
用户1359560
2018/10/15
3.9K0
使用R语言进行机器学习特征选择②
特征工程其实是一个偏工程的术语,在数据库领域可能叫做属性选择,而在统计学领域叫变量选择,其实是一个意思:即最大限度地从原始数据中提取有用信息以供算法和模型使用,通过寻求最优特征子集等方法使模型预测性能最高。
用户1359560
2018/10/22
1.7K0
机器学习-R-特征选择
特征选择是实用机器学习的重要一步,一般数据集都带有太多的特征用于模型构建,如何找出有用特征是值得关注的内容。 1. Feature selection: All-relevant selection with the Boruta package 特征选择两种方法用于分析: (1)最少最优特征选择(minimal-optimal feature selection)识别少量特征集合(理想状况最少)给出尽可能优的分类结果; (2)所有相关特征选择(all-relevant feature selection
小莹莹
2018/04/23
1.6K0
机器学习-R-特征选择
机器学习-R-特征选择
特征选择是实用机器学习的重要一步,一般数据集都带有太多的特征用于模型构建,如何找出有用特征是值得关注的内容。 1. Feature selection: All-relevant selection with the Boruta package 特征选择两种方法用于分析: (1)最少最优特征选择(minimal-optimal feature selection)识别少量特征集合(理想状况最少)给出尽可能优的分类结果; (2)所有相关特征选择(all-relevant feature selection
机器学习AI算法工程
2018/03/13
2.1K0
机器学习-R-特征选择
机器学习小窍门:Python 帮你进行特征选择
特征选择,也就是从数据集中找出并选择最有用特征的过程,是机器学习工作流中一个非常重要的步骤。不必要的特征降低了训练速度,降低了模型的可解释性,最重要的是降低了测试数据集的泛化能力。
AI研习社
2018/07/26
9650
机器学习小窍门:Python 帮你进行特征选择
机器学习-特征选择
1 介绍 在计算机视觉、模式识别、数据挖掘很多应用问题中,我们经常会遇到很高维度的数据,高维度的数据会造成很多问题,例如导致算法运行性能以及准确性的降低。特征选取(Feature Selection)技术的目标是找到原始数据维度中的一个有用的子集,再运用一些有效的算法,实现数据的聚类、分类以及检索等任务。 特征选取的目标是选择那些在某一特定评价标准下的最重要的特征子集。这个问题本质上是一个综合的优化问题,具有较高的计算代价。传统的特征选取方法往往是独立计算每一个特征的某一得分,然后根据得分的高低选取前k个特
机器学习AI算法工程
2018/03/12
1.9K0
机器学习-特征选择
机器学习之特征工程-特征选择
数据挖掘.jpg 从上面的数据挖掘场景可知,当数据预处理完成后,我们需要选择有意义的特征,输入机器学习的算法模型进行训练。通常来说,从两个方面考虑来选择特征: 特征是否发散:如果一个特征不发散,例如方
用户1332428
2018/03/08
2K0
机器学习之特征工程-特征选择
机器学习中如何用F-score进行特征选择
目前,机器学习在脑科学领域的应用可谓广泛而深入,不论你是做EEG/ERP研究,还是做MRI研究,都会看到机器学习的身影。机器学习最简单或者最常用的一个应用方向是分类,如疾病的分类。对于有监督机器学习(如我们常用的SVM)来说,首先需要提取特征值,特征值作为机器学习的输入进行训练,得到模型。但是,在实际的例子中,不太可能把提取到的所有特征值输入到机器学习模型中进行训练,这是因为过多维度的特征值往往会包括冗余成分,这不仅会大大降低学习速度,而且还会产生过拟合现象,进而影响机器学习模型的性能。最典型的列子是我们做MRI研究,可能会提取到上万个特征值。因此,我们需要首先对提取到的特征值进行特征选择,去除冗余特征,即所谓的特征降维。 目前,特征降维的方法很多,笔者这里就不一一列举(可自行度娘),而F-score是其中比较简单和有效的方法,也是很常用的一种方法。今天,笔者在这里就详细讲解一下F-score如何计算,并给出Matlab程序。 第i个特征的F-score的计算公式如下所示:
悦影科技
2021/01/20
1.6K0
机器学习中如何用F-score进行特征选择
机器学习中的特征选择
总第98篇 本篇讲解一些特征工程部分的特征选择(feature_selection),主要包括以下几方面: 特征选择是什么 为什么要做特征选择 特征选择的基本原则 特征选择的方法及实现 特征选择是什么 特征选择也称特征子集选择,是从现有的m个特征中选出对机器学习有用的n个特征(n<=m),以此降低特征维度减少计算量,同时也使模型效果达到最优。 为什么要做特征选择 在实际业务中,用于模型中的特征维度往往很高,几万维,有的一些CTR预估中维度高达上亿维,维度过高会增大模型计算复杂度,但是在这么多维数据中,并
张俊红
2018/04/11
2.2K0
机器学习中的特征选择
机器学习 | 特征选择(Feature Selection)
首先对Feature Selection相关的问题进行一个综合性的回顾,主要包含一下几点: 1) Dimensionality reduction(降维)简要介绍; 2) Feature extraction/ Feature projection(特征提取/特征投影)简要介绍; 3)Feature selection(特征选择)简要介绍; 4)Feature selection(特征选择)展开描述; 5)部分相关文献推荐。
week
2021/11/29
6020
如何使用方差阈值进行特征选择
今天,数据集拥有成百上千个特征是很常见的。从表面上看,这似乎是件好事——每个样本的特征越多,信息就越多。但通常情况下,有些特征并没有提供太多价值,而且引入了不必要的复杂性。
deephub
2021/04/16
2.1K0
Python机器学习中的特征选择
原文地址:https://machinelearningmastery.com/feature-selection-machine-learning-python/
Steve Wang
2018/02/02
4.5K0
Python机器学习中的特征选择
R语言进行机器学习方法及实例(一)
  机器学习的研究领域是发明计算机算法,把数据转变为智能行为。机器学习和数据挖掘的区别可能是机器学习侧重于执行一个已知的任务,而数据发掘是在大数据中寻找有价值的东西。 机器学习一般步骤 收集数据,将数据转化为适合分析的电子数据 探索和准备数据,机器学习中许多时间花费在数据探索中,它要学习更多的数据信息,识别它们的微小差异 基于数据训练模型,根据你要学习什么的设想,选择你要使用的一种或多种算法 评价模型的性能,需要依据一定的检验标准 改进模型的性能,有时候需要利用更高级的方法,有时候需要更换模型 机器学习算法
用户1680321
2018/04/27
3.4K0
R语言进行机器学习方法及实例(一)
使用特征传播重构缺失数据进行图机器学习
大多数图神经网络通常在所有节点都可用的特征假设下运行。但是在现实世界的中,特征通常只有部分可用(例如,在社交网络中,只有一小部分用户可以知道年龄和性别)。本文种展示的特征传播是一种用于处理图机器学习应用程序中缺失的特征的有效且可扩展的方法。它很简单,但效果出奇地好。
deephub
2022/03/12
4620
使用特征传播重构缺失数据进行图机器学习
《机器学习》笔记-特征选择与稀疏学习(11)
如今机器学习和深度学习如此火热,相信很多像我一样的普通程序猿或者还在大学校园中的同学,一定也想参与其中。不管是出于好奇,还是自身充电,跟上潮流,我觉得都值得试一试。对于自己,经历了一段时间的系统学习(参考《机器学习/深度学习入门资料汇总》),现在计划重新阅读《机器学习》[周志华]和《深度学习》[Goodfellow et al]这两本书,并在阅读的过程中进行记录和总结。这两本是机器学习和深度学习的入门经典。笔记中除了会对书中核心及重点内容进行记录,同时,也会增加自己的理解,包括过程中的疑问,并尽量的和实际的工程应用和现实场景进行结合,使得知识不只是停留在理论层面,而是能够更好的指导实践。记录笔记,一方面,是对自己先前学习过程的总结和补充。 另一方面,相信这个系列学习过程的记录,也能为像我一样入门机器学习和深度学习同学作为学习参考。
机器学习算法工程师
2018/07/27
5050
《机器学习》笔记-特征选择与稀疏学习(11)
机器学习 学习笔记(16) 特征选择与稀疏学习
对当前学习任务有用的属性称为相关特征,没什么用的属性称为无关特征,从给定的特征集合中选择出相关特征自己的过程,称为特征选择。
2018/09/04
2.4K0
机器学习 学习笔记(16) 特征选择与稀疏学习
机器学习如何做特征选择实验
在现实世界中,有很多类包含很多特征,比如生物的DNA,在利用不同算法选出较少的特征子集后,如何评价选出来的特征是至关重要的。
里克贝斯
2021/05/21
3660
机器学习如何做特征选择实验
机器学习中特征选择的通俗讲解!
据《福布斯》报道,每天大约会有 250 万字节的数据被产生。然后,可以使用数据科学和机器学习技术对这些数据进行分析,以便提供分析和作出预测。尽管在大多数情况下,在开始任何统计分析之前,需要先对最初收集的数据进行预处理。有许多不同的原因导致需要进行预处理分析,例如:
郭好奇同学
2021/11/29
8120
机器学习中特征选择的通俗讲解!
使用R语言进行异常检测
本文结合R语言,展示了异常检测的案例,主要内容如下: (1)单变量的异常检测 (2)使用LOF(local outlier factor,局部异常因子)进行异常检测 (3)通过聚类进行异常检测 (4)对时间序列进行异常检测 单变量异常检测 本部分展示了一个单变量异常检测的例子,并且演示了如何将这种方法应用在多元数据上。在该例中,单变量异常检测通过boxplot.stats()函数实现,并且返回产生箱线图的统计量。在返回的结果中,有一个部分是out,它结出了异常值的列表。更明确点,它列出了位于极值之外的胡须。
小莹莹
2018/04/23
2.2K0
使用R语言进行异常检测
使用谱聚类(spectral clustering)进行特征选择
谱聚类是一种基于图论的聚类方法,通过对样本数据的拉普拉斯矩阵的特征向量进行聚类,从而达到对样本数据聚类的目的。谱聚类可以理解为将高维空间的数据映射到低维,然后在低维空间用其它聚类算法(如KMeans)进行聚类
数据STUDIO
2023/02/24
1.2K0
使用谱聚类(spectral clustering)进行特征选择

相似问题

机器学习有哪些算法?

1401

新手与机智机器学习?

2512

小白如何快速上手机器学习(深度学习)?

0298

在机器学习中,损失函数一般要怎么选择?

056
相关问答用户
腾讯云TDP | TDP会员擅长3个领域
到家集团 | 技术VP擅长5个领域
腾讯云TDP | KOL擅长5个领域
添加站长 进交流群

领取专属 10元无门槛券

AI混元助手 在线答疑

扫码加入开发者社群
关注 腾讯云开发者公众号

洞察 腾讯核心技术

剖析业界实践案例

扫码关注腾讯云开发者公众号
领券
社区富文本编辑器全新改版!诚邀体验~
全新交互,全新视觉,新增快捷键、悬浮工具栏、高亮块等功能并同时优化现有功能,全面提升创作效率和体验
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档
查看详情【社区公告】 技术创作特训营有奖征文