我正在研究一个问题,根据奶牛的图像来预测奶牛有多胖。我使用CNN来估计介于0-5之间的值(我拥有的数据集,只包含2.25到4之间的值),我使用的是4层CNN层和3层隐藏层。
我实际上有两个问题: 1/我得到0.05的训练误差,但3-5周期后,验证误差保持在0.33左右。2/我的神经网络预测的值在2.9到3.3之间,与数据集范围相比太窄了。这正常吗?
我该如何改进我的模型?
model = tf.keras.models.Sequential([
tf.keras.layers.Conv2D(16, (3,3), activation='relu', input_shape=(512, 424,1)),
tf.keras.layers.MaxPooling2D(2, 2),
tf.keras.layers.Conv2D(32, (3,3), activation='relu'),
tf.keras.layers.MaxPooling2D(2, 2),
tf.keras.layers.Conv2D(32, (3,3), activation='relu'),
tf.keras.layers.MaxPooling2D(2, 2),
tf.keras.layers.Conv2D(64, (3,3), activation='relu'),
tf.keras.layers.MaxPooling2D(2,2),
tf.keras.layers.Flatten(input_shape=(512, 424)),
tf.keras.layers.Dense(256, activation=tf.nn.relu),
tf.keras.layers.Dense(128, activation=tf.nn.relu),
tf.keras.layers.Dense(64, activation=tf.nn.relu),
tf.keras.layers.Dense(1, activation='linear')
])
学习曲线:
预测:
发布于 2019-12-04 01:22:20
这似乎是过度适应的情况。你可以的
Shuffle
Data
,通过在cnn_model.fit
中使用shuffle=True
。代码如下:
history = cnn_model.fit(x = X_train_reshaped, y = y_train, batch_size = 512, epochs = epochs, callbacks=[callback], verbose = 1, validation_data = (X_test_reshaped, y_test), validation_steps = 10, steps_per_epoch=steps_per_epoch, shuffle = True)
Early Stopping
。代码如下所示
callback = tf.keras.callbacks.EarlyStopping(monitor='val_loss', patience=15)
from tensorflow.keras.regularizers import l2
Regularizer = l2(0.001)
cnn_model.add(Conv2D(64,3, 3, input_shape = (28,28,1), activation='relu', data_format='channels_last', activity_regularizer=Regularizer, kernel_regularizer=Regularizer))
cnn_model.add(Dense(units = 10, activation = 'sigmoid', activity_regularizer=Regularizer, kernel_regularizer=Regularizer))
BatchNormalization
。ImageDataGenerator
执行图像数据增强。有关这方面的更多信息,请参考此链接。Normalized
,用255
除以像素值也有帮助。Pre-Trained Models
,如ResNet
或VGG Net
等。https://stackoverflow.com/questions/57061266
复制