Loading [MathJax]/jax/output/CommonHTML/config.js
前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
社区首页 >专栏 >为什么要研究游戏 AI 呢?

为什么要研究游戏 AI 呢?

作者头像
AI科技大本营
发布于 2023-04-14 04:46:52
发布于 2023-04-14 04:46:52
5170
举报

作者 | 叶鑫

来源 | Datawhale

AI作为时下计算机算法的超级巨星,在例如CV、NLP、语音、机器人等诸多领域都有广泛的应用。而在游戏领域,AI的应用往往被认为只是把游戏角色拟人化,算法的第一印象也通常是强化学习。但实际当中,AI在游戏中的应用却不止于此。本文就来介绍一下游戏领域的AI应用与算法。

首先摆在我们面前的是,为什么要研究游戏AI呢?

游戏可以看做现实问题的折射,研究它可以为解决现实问题提供有价值的样本;同时,游戏的算法永远不会被单单的几种算法所束缚,多种形式的AI方法可以分别或结合在不同的游戏中。更重要的,当然是因为它很有趣~!!!!:P

引用《AI与游戏》 中的话:

自 AI 的想法诞生以来,游戏一直为 AI 的研究过程提供助力。游戏不仅提出有趣且复杂的问题来供AI解决————例如去精通一个游戏;它们也为(人类,甚至机器)用户能够体验到的创意以及表达提供了一个画布。因此可以说,游戏是罕见的,是科学(解决问题)与艺术相碰撞并相互作用的领域,而这些因素也让游戏对于AI的研究来说成为一个独特并且优秀的环境。然而不仅是AI在游戏中提升,游戏也在AI研究中得到了发展。 ——《Artificial Intelligence and Games》

01 从游戏环节看AI应用

在游戏领域中,AI的应用其实并不仅仅是人们印象中的玩家型战斗AI。传统意义上的游戏制作融入了AI的方法之后在各个环节都催生了相应的应用与算法。如果我们将一款游戏拆开来看他的各个环节,这些AI的应用就变得直观起来。

1.1 游戏画面

在游戏制作的环节里,开发者需要制作相应角色的动画模型,来满足使用者在游戏内视觉上的需求,在传统的游戏制作上,通常需要一名专门游戏原画师来制作相应的内容,但是聚焦到游戏内角色们的表情与动作这些细节上时,动画的设计通常变得吃力不讨好起来,应用视觉AI可以将人们的动作投影到角色身上,生成相应的动作表情;而在环境的设计中,AI也可以起到相似的效果,通过输入现实的图片来得到相应的游戏画面。在这个问题上,CV中的机器学习方法例如姿态识别,表情识别,GAN等起到了关键性的作用。下面几个例子带你一窥AI是如何创造游戏画面的。

▲ 动作识别

▲ 表情识别

深度强化学习

▲ AlphaGo中基于蒙特卡洛搜索树的深度强化学习

▲ 演化算法

1.2 玩家型AI

该类型应该是最被大众所熟知的游戏AI类型,2017年AlphaGo击败世界围棋冠军李世石,2019年OpenAI Five击败DOTA2世界冠军OG证明了AI在游戏上的表现可以超越人类。而此类AI问题本质上可以看成是路径规划问题,即根据当前的游戏状态生成相应的动作序列。典型的以强化学习、深度强化学习为代表的游戏AI目前在国内的游戏工业界已被大量研究,在某些游戏类型例如棋牌类、回合制策略游戏中,蒙特卡洛搜索树(行为树)、演化算法、A*等在线学习算法也具有一定优势。

1.3 游戏内容

在这一方面的AI应用常常不为人所知,通常被称为Procedural Content Generation(PCG)。在游戏内容(地图)的产出上,以魔兽争霸3为例,一方面依赖于游戏本体制作时开发者制作的地图;另一方面依赖于社区玩家的自定义地图,而社区玩家内容又更是由玩家数量所决定,丰富且可行的游戏内容是吸引玩家入坑的重要保障。利用AI去生成可行的游戏内容是非常值得研究的方向。目前该方向的主流算法包括演化算法、GAN等

▲ AI生成游戏内容

▲ GAN的应用

1.4 游戏初始化平衡

目前在卡牌类游戏中,为了初始化得到的卡牌或是环境相对平衡,在PVE游戏中体现为玩家可以战胜Bot,PVP游戏例如炉石传说、自走棋,防止出现双方卡牌差距过大导致输掉,可以利用AI来设计发牌的策略。该方向的主要算法为演化算法

▲ 炉石中的演化算法平衡牌组

1.5 游戏测试

在游戏制作完成后,开发者们需要测试游戏内存在的bug,这毫无疑问是重要的,如果一款游戏存在大量的bug,对该游戏的评价和收益都会造成巨大的影响。而测试游戏需要大量的时间,在这一方面,测试专用的agent可以被设计来面对这一挑战,目前这一块的算法主要为蒙特卡洛搜索树、强化学习、深度强化学习等。

▲ 深度强化学习自动测试agent

1.6 用户画像

在游戏的运营过程中,玩家在游戏内的行为会产生丰富且复杂的数据,这些数据内折射了玩家的行为,分析并合理利用这些数据可以提炼出有价值的信息,这些信息可以用作促进游戏更新更多玩家喜欢的内容,预测玩家的行为和喜好,检测作弊外挂等。这一种游戏中的数据分析问题被称为用户画像问题,利用合理的机器学习算法可以极大提升玩家的游戏体验。

▲ 用户画像分析

02 AI应用在游戏中的详细分类

【硬核预警】下面将参考开篇提到的的《Artificial Intelligence and Games》,对游戏领域的AI从应用方法两方面做汇总介绍,在方法部分会涉及大量AI技术。

根据上图,AI在游戏中的具体应用可以大致划分为三个方向:

  • 利用AI玩游戏
  • 利用AI为玩家建模
  • 利用AI生成游戏内容

2.1 利用AI玩游戏

在游戏中建立bot。

(1)应用为导向

a.与玩家对抗/协作 依据数据和预算产生不同水平的agent,可以与玩家共同匹配作为PVE的NPC等提高玩家体验水平,由此引申的功能可以有动态难度调节,游戏自动平衡

b.游戏bug测试 在投入运行前,可以通过投入大量的有测试行为的agent进入游戏,根据其行动期间的log异常来得到一些bug,或是通过bot间的对战,依据一定的判定方法来得到版本数值平衡性分析

c.合成数据收集 在游戏投入运行得到一定的玩家数据前,可以使用agent的行动来得到仿真的玩家数据,例如阵型识别,胜率预测等数据。

d.产生更强力的agent 根据共同演化的方法,一系列基础的agent可以通过参数演化或者agent间对抗性的方法来催生性能更好的agent

e.寻路(Pathfinding) 寻路规划可以被视为AI动作序列输出的一种特例。在某些游戏例如马里奥中,寻路算法本身就构成了AI player。

(2)方法为导向

根据是否使用了游戏提供的仿真模型(即可根据目前的游戏状态以及可执行动作得到后续的帧的游戏状态可以将其分为Model-based与Model-free的agent。

a.Model Based(基于模型的agent)

  • Planning-based:最佳优先搜索(例如 ),蒙特卡洛树搜索,演化规划
  • 基于模型的强化学习

b.Model Free(无模型方法)

  • 静态类方法:状态机,行为树,基于效用(启发式)函数的AI方法
  • planning-based:STRIPS(符号化表示规划)

c.学习类方法

  • 强化学习:需要高度表格化表示。
  • 深度强化学习:基于游戏图像,不需要标记数据,但需要有游戏实时的奖励设置。
  • 演化算法:通过演化算法来更新神经网络结构和权重来达到最优化。
  • 模仿学习:根据玩家的数据来学习游戏的策略,基于游戏图像,需要玩家数据。
  • 逆强化学习:根据策略来学习游戏中的奖励分布。

2.2 利用AI生成游戏内容

就是PCG(Procedural content generation),利用AI的方法去协助设计游戏系统,前置要求是需要比较好的数据(包括数据的质量,数据的代表方式,数据的数量)和有代表性的评估方法(包括美学,可玩性,新奇性)。具体的应用方法需要进一步查阅资料。

(1)应用为导向

a.(辅助)生成游戏中的内容(影响规则):关卡、地图、物品、武器、任务、人物、规则等。

b.(辅助)生成游戏中的外观(不影响规则):人物外观,表情,武器外观,音效等。

c.辅助设计

d.修复地图bug:对无法抵达的死角做检测与替换等。

e.数据压缩:将游戏数据压缩到更小的尺寸。

(2)方法为导向

a.元胞自动机 使用领域规则根据随机初始状态生成大量不规则图形,可用于热量、雨水、液体流动、压力爆炸等环境系统建模,也可以生成洞窟等小型地图,但无法保证可控性

b.基于文法方法 定义一系列文法规则来生成内容。

c.基于搜索方法(通常为Evolutionary Algorithms,EA): 相较于机器学习的方法,搜索方法可以大大减少所需求的数据量,关键问题有例如需要确定较好的内容表示形式,需要有一种较好的评估手段。有以下几种分类:

  • EA类算法:遗传算法,演化策略,演化编程
  • EA like 算法:粒子群演算法,差分进化算法
  • content representation
  • 评估方法
    • 直接评估是通过某种函数去约束评估生成的内容,包括Theory-driven和Data-driven,区别在于评估函数是基于理论还是经验模型的。
    • 基于仿真是利用bot AI去进行游戏来评估游戏的内容。包括静态评估和动态评估,区别是评估函数是否会随着时间改变。
    • 互动评估属于实时评估,通过人类玩家的体验进行评价。包括隐式评估-通过玩家玩游戏产生的数据来分析内容好坏,以及显式评估- 玩家直接评分

d.机器学习方法 PCG研究的一个新方向是在现有内容上训练生成器,以便能够产生更多相同类型和风格的内容。这是受最近的深度神经网络研究结果的启发,其中生成式对抗网络和变异自动编码器等网络架构在学习生成卧室、猫或人脸等图像方面取得了很好的效果,同时也受到了早期研究结果的启发,其中较简单的学习机制如马尔科夫链和较复杂的架构如递归神经网络都在一些语料库的训练后学习生成文本和音乐。

  • 神经网络,包括GAN,AutoEncoder和NeuroEvolution等等。
  • 概率模型,包括决策树等

大致的PCGML数据代表方式与训练方法总结如下: 1.数据representation: - Sqquences: 利用顺序的向量来作为输入(输出)数据 - Grid: 使用2D的网格结构来作为输入(输出)数据 - Graph:使用原始图像作为输入(输出)数据 2.PCGML训练方法: - Backpropagation: 利用反向传播作为训练NN的方法来 - Evolution: 使用演化计算方法来训练NN或是直接生成结果 - Frequency Count:使用统计学与马尔科夫链变种来计算概率 - Expectation Maximization: 利用EA算法来训练无监督学习模型 - Matrix Factorization:矩阵因子化是一种数学方法来将输入的矩阵分解到更低维度的方法

e.将游戏生成内容与玩家体验结合(EDPCG,Expierience-driven PCG),它包括了三个核心方面: 情绪激发、情绪检测和情绪表达

  • 情绪激发: 游戏为激发情感提供了出色的背景构件,因为刺激是变化的,来自不同的来源,如图像、声音、故事等等。
  • 情绪检测: 游戏用户(玩家)通常更愿意提供更多的多模态性质的输入(通过传感器),只要这将导致体验的增强。从某种意义上说,玩家是情感计算和多模态交互研究的最佳用户。
  • 情绪表达: 用户在游戏中自愿经历一系列的体验:这些体验从非常积极的到非常消极的都有。同时,游戏中的情感体验是受玩家影响的! 因此,玩家习惯于并在很大程度上对基于情感的表达持开放态度!

2.3 利用AI为玩家建模

利用游戏产生的数据来为玩家建立体验行为模型(包括其消费预测,游戏性行为预测,体验感预测)或是进一步利用该数据来更新与描述游戏(例如平衡性分析,游戏流派,提供给Agent更多的训练数据)

以潜行恐怖游戏《Hello Neighbor》中的玩家建模例子。在这款游戏中,AI打造的领居会一直跟踪玩家,并从过去的错误中吸取教训,致力于打败玩家。

(1)应用为导向

a.理解玩家在游戏中的体验。AI可以根据玩家的体验感来评测游戏各个组件与系统; 辅助更新新的游戏活动; 辅助更新前两个AI系统。 b.理解玩家在游戏中的行为。AI辅助分析游戏行为,例如发掘一些新的游戏玩法;可以根据异常数据来判定外挂等作弊系统;形成可观的游戏数据来支持新的游戏AI迭代;辅助设计更具有公平性的匹配系统;预测玩家的行为;对玩家社交群体分类;分析玩家的性格

(2)方法为导向

a.经验VS行为(Experience vs Behavior)

  • Experience: 玩家在游戏过程中的感受,包括:一系列(合成的)感受、认知、行为状态,或是其他的用户状态,情绪和认知等
  • Behavior:玩家在游戏过程中的行为。

b.高级概念分类

  • model-based(理论驱动):从一些列玩家心理学、认知学的研究中得到一些玩家对应游戏的模型,来自上而下的设计游戏
  • model-free(数据驱动):不利用之前的学科研究来对玩家进行自下而上的建模,其中包括可视化,例如热力图来衡量玩家的活动频率。

c.监督学习 玩家建模包括寻找一个函数,将玩家的一组可测量的属性映射到特定的玩家状态。按照监督学习的方法,这是通过机器学习或自动调整模型的参数来实现的,以适应包含一组输入样本的数据集,每个样本与目标输出配对。输入样本对应于可测量的属性(或特征)列表,而目标输出对应于我们有兴趣学习预测的每个输入样本的玩家状态的注释。如前所述,注释可以从行为特征,如关卡或玩家原型的完成时间,到玩家经验的估计,如玩家的挫折感等。

d.无监督学习 很多时候,我们面临的数据集是没有关于玩家行为或经验状态的目标输出。在这种情况下,玩家的建模必须依靠无监督学习。无监督学习的重点是通过发现输入的关联,在没有获得目标输出的情况下,将模型与观察结果相匹配。输入通常被视为一组随机变量,通过观察输入向量之间的关联来建立模型。应用于玩家建模的无监督学习包括聚类和关联挖掘等任务。

参考

[1]Georgios N. Yannakakis and Julian Togelius. Lecture. Slide 3. Playing Games. [Online].http://gameaibook.org/lectures/

[2]Georgios N. Yannakakis and Julian Togelius. Lecture. Slide 4. Generating Content. [Online].http://gameaibook.org/lectures/

[3]Summerville, Adam, Sam Snodgrass, Matthew Guzdial, Christoffer Holmgård, Amy K. Hoover, Aaron Isaksen, Andy Nealen, and Julian Togelius. "Procedural content generation via machine learning (PCGML)." IEEE Transactions on Games 10, no. 3 (2018): 257-270. [pdf]

[4]Georgios N. Yannakakis and Julian Togelius. Lecture. Slide 5. Modeling Players. [Online].http://gameaibook.org/lectures/

资讯

OpenAI真的open了,更加开放

资讯

人工智能监考VS传统方式监考

资讯

Meta研发触觉手套助力元宇宙

资讯

自动驾驶图书馆,热爱阅读的er

分享

点收藏

点点赞

点在看

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2021-11-22,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 AI科技大本营 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
资源 |《人工智能与游戏》发行初版:从三个方面概述游戏人工智能(附下载)
选自gameaibook 机器之心编译 参与:黄小天 近日,由马耳他大学副教授、情感计算专家 Georgios N. Yannakakis 和纽约大学副教授、人工智能与游戏研究者 Julian To
机器之心
2018/05/08
8800
资源 |《人工智能与游戏》发行初版:从三个方面概述游戏人工智能(附下载)
一图尽展视频游戏AI技术,DQN无愧众算法之鼻祖
如今,将人工智能技术应用到游戏中已经是一个成熟的研究领域,有许多会议和专门的期刊对此进行讨论。来自哥本哈根大学和纽约大学的几位研究人员近期发布的一篇综述文章中,梳理并回顾了视频游戏深度学习领域的最新进展,详细介绍了各种游戏研究平台及相关深度学习方法的演化历史,同时讨论了重要的开放性挑战。据作者介绍,其撰写该论文旨在从不同类型游戏的视角来回顾这个研究领域,指出它们对深度学习的挑战,以及如何利用深度学习来玩这些游戏。
机器之心
2019/03/12
7140
一图尽展视频游戏AI技术,DQN无愧众算法之鼻祖
业界 | 人类又输了?AI研究为何如此痴迷游戏对决?
程序猿为何痴迷于用人工智能攻克各种游戏?是对网瘾少年的嘲讽,还是对科技未来的探索?这一切的背后,是人性的扭曲还是道德的沦丧?敬请关注本期的走进大数据文摘!
大数据文摘
2018/08/21
3130
业界 | 人类又输了?AI研究为何如此痴迷游戏对决?
如何设计星际争霸2等游戏AI?解密决策AI的应用及其在游戏中的设计!
作者 | Don 编辑 | 青暮 北京时间10月28日,商汤科技和 AI 研习社共同举办决策智能系列公开课,对如何提高决策 AI 通用能力、泛化能力和适应能力以及复杂场景下 AI 鲁棒性进行介绍,AI科技评论对此公开课做了不改变原意的整理。 视频回放链接:https://live.yanxishe.com/room/972 1 摘要 人工智能技术已经进入从感知智能到决策智能演变的关键节点,决策AI技术的前沿进展和突破也到了在实际场景部署和应用的阶段。决策AI技术应用的成功与否直接决定了这一技术在产业界的认
AI科技评论
2023/04/26
4520
如何设计星际争霸2等游戏AI?解密决策AI的应用及其在游戏中的设计!
塔秘 | DeepMind到底是如何教AI玩游戏的?
导读 DeepMind到底是如何教AI玩游戏的?这篇在Medium上获得1700个赞的文章,把里面的原理讲清楚了。 谷歌的DeepMind是世界一流的AI研究团队,其研发的AlphaGo在2016年备
灯塔大数据
2018/04/04
2.5K0
塔秘 | DeepMind到底是如何教AI玩游戏的?
【综述翻译】Deep Learning for Video Game Playing
原文来源:https://arxiv.org/pdf/1708.07902.pdf
深度强化学习实验室
2020/12/16
1.1K0
【综述翻译】Deep Learning for Video Game Playing
从游戏AI到自动驾驶,一文看懂强化学习的概念及应用
强化学习(Reinforcement Learning,简称RL,又译为“增强学习”)这一名词来源于行为心理学,表示生物为了趋利避害而更频繁实施对自己有利的策略。例如,我每天工作中会根据策略决定做出各种动作。如果我的某种决定使我升职加薪,或者使我免遭处罚,那么我在以后的工作中会更多采用这样的策略。
IT阅读排行榜
2019/08/19
9730
从游戏AI到自动驾驶,一文看懂强化学习的概念及应用
ICML论文|阿尔法狗CTO讲座: AI如何用新型强化学习玩转围棋扑克游戏
6月19日(美国时间)在纽约举行的国际机器学习大会(ICML)上,来自谷歌、Facebook以及顶尖研究学府的科学家们通过论文和讲座,分享了最尖端的机器学习研究成果。其中,谷歌DeepMind科学家D
AI科技评论
2018/03/07
9100
ICML论文|阿尔法狗CTO讲座: AI如何用新型强化学习玩转围棋扑克游戏
腾讯AI Lab x 王者荣耀:开放让「AI+游戏」想象力落地
8月18日,王者荣耀「无限开放计划交流会」在深圳举办,这是一次「造梦之旅」的开始。 王者荣耀项目执行制作人黄蓝枭宣布启动天工计划,将王者荣耀的游戏玩法核心进一步向外界开放,推动游戏生态再一次进化。该计划将开放游戏中的地图、角色、剧情到关卡的编辑功能,外部工作室和个人自由创造全新玩法,并有机会上架到游戏与玩家见面,是两亿用户对想象力的表达。王者荣耀还会将游戏玩法和直播互动自由结合,如开发弹幕彩蛋和自定义玩法等直播互动新形式(点击这里 查看更多详情)。 腾讯 AI Lab x 王者荣耀 x 高校 携手
腾讯高校合作
2019/08/20
9110
腾讯AI Lab x 王者荣耀:开放让「AI+游戏」想象力落地
强化学习解释:概述、比较和商业应用
想象你正在电脑游戏中完成一项任务,例如,穿过一个军事仓库去寻找一件秘密武器。正确的行动(杀死敌人)会得到额外的分数,而错误的行动(掉进坑里或被击中)会失去额外的分数。
用户7623498
2020/08/04
8640
腾讯绝悟AI完全体限时开放体验,研究登上国际顶会与顶刊
感谢阅读腾讯AI Lab微信号第112篇文章。本文将介绍绝悟 AI 完全体升级版本的技术方法,也欢迎读者到王者荣耀 app 亲身体验其技术实力。 腾讯 AI Lab 宣布与王者荣耀联合研发的策略协作型 AI“绝悟”推出升级版本。 创新算法突破了可用英雄限制(英雄池数量从40增为100+),让 AI 完全掌握所有英雄的所有技能,能应对高达10的15次方的英雄组合数变化; 优化了禁选英雄(BanPick,简称BP)博弈策略,能综合自身技能与对手情况等多重因素派出最优英雄组合。 相关研究已被 AI 顶级会议 N
腾讯技术工程官方号
2020/12/01
1.5K0
超越99.9%人类玩家,微软专业十段麻将AI论文细节首次公布
继围棋、德州扑克、Dota、星际争霸之后,微软亚洲研究院的「Suphx」创造了 AI 在游戏领域的另一跨越性突破——麻将。
机器之心
2020/04/14
9340
超越99.9%人类玩家,微软专业十段麻将AI论文细节首次公布
DeepMind到底是如何教AI玩游戏的?这篇在Medium上获得1700个赞的文章,把里面的原理讲清楚了
一篇顶十篇!想入门强化学习,专心研读这篇对DeepMind经典论文的解析就够了 作者 | Aman Agarwal 编译 | Shawn 编辑 | 鸽子、焦燕 DeepMind到底是如何教AI玩游戏的?这篇在Medium上获得1700个赞的文章,把里面的原理讲清楚了。 谷歌的DeepMind是世界一流的AI研究团队,其研发的AlphaGo在2016年备受瞩目的人机大战中击败了韩国围棋冠军李世石(Lee Sedol),一战成名。AlphaGo背后的关键技术就是深度强化学习(Deep Reinforcem
AI科技大本营
2018/04/26
1.5K0
DeepMind到底是如何教AI玩游戏的?这篇在Medium上获得1700个赞的文章,把里面的原理讲清楚了
浙大提出会打德扑的「自我博弈」AI,还会玩射击游戏
随着深度强化学习的快速发展,AI 已经在围棋等信息完整的游戏中战胜了人类专业玩家。然而,「星际争霸」等信息不完整游戏的研究还没有取得同样的进展。这类研究的一大问题是,它们很少从理论和量化的角度考虑对其训练和结果进行评估,因此效果难以保证。
机器之心
2019/04/29
7770
浙大提出会打德扑的「自我博弈」AI,还会玩射击游戏
人工智能改变游戏未来?网易伏羲AI Lab展示游戏开发黑科技
网易旗下知名手游《倩女幽魂》正式公布了「阿初」,和此前出现在电视台播报新闻中的虚拟主播不同。网易在游戏中的 AI 虚拟形象试图探索未来人机交互的方式:它是随时可以和你互动的,所有行为、对话都是人工智能技术实时产生的。「阿初」将是之后打造虚拟形象的切入口。
机器之心
2019/05/23
1.2K0
漫谈游戏的深度学习算法,从FPS和RTS角度分析
人工智能那么火热,作为游戏行业的技术人员可定也不会放过,今天,我们就一起来聊聊,在游戏中人工智能是如何实现深度学习技术的。  我们关注基于深度学习的游戏 AI 中广泛存在的问题以及使用的环境,如 Atari/ALE、《毁灭战士》(Doom)、《我的世界》(Minecraft)、《星际争霸》(StarCraft)和赛车游戏。另外,我们综述了现有的研究,指出亟待解决的重要挑战。我们对能够玩好电子游戏(非棋类游戏,如围棋等)的方法很感兴趣。本文分析了多种游戏,指出这些游戏给人类和机器玩家带来的挑战。必须说明,本文
机器人网
2018/04/25
1.8K0
漫谈游戏的深度学习算法,从FPS和RTS角度分析
从FPS到RTS,一文概述游戏人工智能中的深度学习算法
选自arXiv 机器之心编译 参与:路雪、李泽南、李亚洲 本文综述了用于打电子游戏的深度学习算法,分析了不同类型的电子游戏对深度学习系统的要求,同时也列举了一些开放性挑战。 论文链接:https://
机器之心
2018/05/08
1.5K0
从FPS到RTS,一文概述游戏人工智能中的深度学习算法
被infoQ采访:游戏中应用强化学习技术,目的就是要打败人类玩家?
2016 年,DeepMind 公司开发的 AlphaGo 4:1 大胜韩国著名棋手李世石,成为第一个战胜围棋世界冠军的人工智能机器人,一时风头无两。AlphaGo 的巨大成功开启了“人工智能元年”,也让强化学习渐为大众熟悉。
黄鸿波
2021/09/29
4800
游戏AI探索之旅:从AlphaGo到MOBA游戏
背景:7月28日,腾讯云在北京举办云+社区沙龙,邀请来自腾讯与四川云检科技的五位AI技术专家,分享他们在专业领域的AI开发经验,帮助开发者在具体行业场景中实践AI技术。本文根据王亮在【7.28日腾讯云
腾讯技术工程官方号
2018/08/17
4.6K5
清华等世界12所顶尖高校学霸组团「打王者」,竟是为了搞科研?
---- 新智元报道   编辑:好困 桃子 【新智元导读】见过学霸打王者的样子吗?这不,清华、中科大、耶鲁等世界12所顶尖高校学霸集结,一来打王者,二来搞科研。 之前凑在一起「打王者」的学霸又来了! 成都大运会开幕在即,「世界大学生数智竞技邀请赛」正式启动。 国际级规模的大赛共邀请了12支队伍(包含中国大陆地区4所高校、中国港澳台地区及海外8所高校)参加。 每支队伍都需要训练三位英雄,并在之后让自己的AI进行「3V3」的对战,而获得冠军的团队可获得高达20万的奖金。 在此前的1V1中,各大高校的AI
新智元
2022/03/21
4860
推荐阅读
资源 |《人工智能与游戏》发行初版:从三个方面概述游戏人工智能(附下载)
8800
一图尽展视频游戏AI技术,DQN无愧众算法之鼻祖
7140
业界 | 人类又输了?AI研究为何如此痴迷游戏对决?
3130
如何设计星际争霸2等游戏AI?解密决策AI的应用及其在游戏中的设计!
4520
塔秘 | DeepMind到底是如何教AI玩游戏的?
2.5K0
【综述翻译】Deep Learning for Video Game Playing
1.1K0
从游戏AI到自动驾驶,一文看懂强化学习的概念及应用
9730
ICML论文|阿尔法狗CTO讲座: AI如何用新型强化学习玩转围棋扑克游戏
9100
腾讯AI Lab x 王者荣耀:开放让「AI+游戏」想象力落地
9110
强化学习解释:概述、比较和商业应用
8640
腾讯绝悟AI完全体限时开放体验,研究登上国际顶会与顶刊
1.5K0
超越99.9%人类玩家,微软专业十段麻将AI论文细节首次公布
9340
DeepMind到底是如何教AI玩游戏的?这篇在Medium上获得1700个赞的文章,把里面的原理讲清楚了
1.5K0
浙大提出会打德扑的「自我博弈」AI,还会玩射击游戏
7770
人工智能改变游戏未来?网易伏羲AI Lab展示游戏开发黑科技
1.2K0
漫谈游戏的深度学习算法,从FPS和RTS角度分析
1.8K0
从FPS到RTS,一文概述游戏人工智能中的深度学习算法
1.5K0
被infoQ采访:游戏中应用强化学习技术,目的就是要打败人类玩家?
4800
游戏AI探索之旅:从AlphaGo到MOBA游戏
4.6K5
清华等世界12所顶尖高校学霸组团「打王者」,竟是为了搞科研?
4860
相关推荐
资源 |《人工智能与游戏》发行初版:从三个方面概述游戏人工智能(附下载)
更多 >
领券
社区富文本编辑器全新改版!诚邀体验~
全新交互,全新视觉,新增快捷键、悬浮工具栏、高亮块等功能并同时优化现有功能,全面提升创作效率和体验
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档
查看详情【社区公告】 技术创作特训营有奖征文