前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
社区首页 >专栏 >机器学习最优化算法(全面总结)

机器学习最优化算法(全面总结)

作者头像
Python数据科学
发布于 2023-08-29 10:58:33
发布于 2023-08-29 10:58:33
5120
举报
文章被收录于专栏:Python数据科学Python数据科学

导言

对于几乎所有机器学习算法,无论是有监督学习、无监督学习,还是强化学习,最后一般都归结为求解最优化问题。因此,最优化方法在机器学习算法的推导与实现中占据中心地位。在这篇文章中,小编将对机器学习中所使用的优化算法做一个全面的总结,并理清它们直接的脉络关系,帮你从全局的高度来理解这一部分知识。

机器学习要求解的数学模型

几乎所有的机器学习算法最后都归结为求一个目标函数的极值,即最优化问题,例如对于有监督学习,我们要找到一个最佳的映射函数f (x),使得对训练样本的损失函数最小化(最小化经验风险或结构风险):

在这里,N为训练样本数,L是对单个样本的损失函数,w是要求解的模型参数,是映射函数的参数,xi为样本的特征向量,yi为样本的标签值。

或是找到一个最优的概率密度函数p(x),使得对训练样本的对数似然函数极大化(最大似然估计):

在这里,θ是要求解的模型参数,是概率密度函数的参数。

对于无监督学习,以聚类算法为例,算法要是的每个类的样本离类中心的距离之和最小化:

在这里k为类型数,x为样本向量,μi为类中心向量,Si为第i个类的样本集合。

对于强化学习,我们要找到一个最优的策略,即状态s到动作a的映射函数(确定性策略,对于非确定性策略,是执行每个动作的概率):

使得任意给定一个状态,执行这个策略函数所确定的动作a之后,得到的累计回报最大化:

这里使用的是状态价值函数。

总体来看,机器学习的核心目标是给出一个模型(一般是映射函数),然后定义对这个模型好坏的评价函数(目标函数),求解目标函数的极大值或者极小值,以确定模型的参数,从而得到我们想要的模型。在这三个关键步骤中,前两个是机器学习要研究的问题,建立数学模型。第三个问题是纯数学问题,即最优化方法,为本文所讲述的核心。

最优化算法的分类

对于形式和特点各异的机器学习算法优化目标函数,我们找到了适合它们的各种求解算法。除了极少数问题可以用暴力搜索来得到最优解之外,我们将机器学习中使用的优化算法分成两种类型(本文不考虑随机优化算法如模拟退火、遗传算法等):
  • 公式求解
  • 数值优化

前者给出一个最优化问题精确的公式解,也称为解析解,一般是理论结果。后者是在要给出极值点的精确计算公式非常困难的情况下,用数值计算方法近似求解得到最优点。除此之外,还有其他一些求解思想,如分治法,动态规划等。我们在后面单独列出。一个好的优化算法需要满足:

  • 能正确的找到各种情况下的极值点
  • 速度快

下图给出了这些算法的分类与它们之间的关系:

接下来我们将按照这张图来展开进行讲解。

费马定理

对于一个可导函数,寻找其极值的统一做法是寻找导数为0的点,即费马定理。微积分中的这一定理指出,对于可导函数,在极值点处导数必定为0:

对于多元函数,则是梯度为0:

导数为0的点称为驻点。需要注意的是,导数为0只是函数取得极值的必要条件而不是充分条件,它只是疑似极值点。是不是极值,是极大值还是极小值,还需要看更高阶导数。对于一元函数,假设x是驻点:

  • 如果f''(x)>0,则在该点处去极小值
  • 如果f''(x)<0,则在该点处去极大值
  • 如果f''(x)>=0,还要看更高阶导数

对于多元函数,假设x是驻点:

  • 如果Hessian矩阵正定,函数在该点有极小值
  • 如果Hessian矩阵负定,函数在该点有极大值
  • 如果Hessian矩阵不定,还需要看更(此处误)

在导数为0的点处,函数可能不取极值,这称为鞍点,下图是鞍点的一个例子(来自SIGAI云端实验室):

除鞍点外,最优化算法可能还会遇到另外一个问题:局部极值问题,即一个驻点是极值点,但不是全局极值。如果我们对最优化问题加以限定,可以有效的避免这两种问题。典型的是凸优化,它要求优化变量的可行域是凸集,目标函数是凸函数。

虽然驻点只是函数取得极值的必要条件而不是充分条件,但如果我们找到了驻点,再判断和筛选它们是不是极值点,比之前要容易多了。无论是理论结果,还是数值优化算法,一般都以找驻点作为找极值点的目标。对于一元函数,先求导数,然后解导数为0的方程即可找到所有驻点。对于多元函数,对各个自变量求偏导数,令它们为0,解方程组,即可达到所有驻点。这都是微积分中所讲授的基础方法。幸运的是,在机器学习中,很多目标函数都是可导的,因此我们可以使用这套方法。

拉格朗日乘数法

费马定理给出的不带约束条件下的函数极值的必要条件。对于一些实际应用问题,一般还带有等式或者不等式约束条件。对于带等式约束的极值问题,经典的解决方案是拉格朗日乘数法。

对于如下问题:

构造拉格朗日乘子函数:

在最优点处对x和乘子变量λi的导数都必须为0:

解这个方程即可得到最优解。对拉格朗日乘数法更详细的讲解可以阅读任何一本高等数学教材。机器学习中用到拉格朗日乘数法的地方有:

  • 主成分分析
  • 线性判别分析
  • 流形学习中的拉普拉斯特征映射
  • 隐马尔可夫模型

KKT条件

KKT条件是拉格朗日乘数法的推广,用于求解既带有等式约束,又带有不等式约束的函数极值。对于如下优化问题:

和拉格朗日对偶的做法类似,KKT条件构如下乘子函数:

λ和μ称为KKT乘子。在最优解处x*应该满足如下条件:

等式约束hj (x*)=0和不等式约束gk (x*)<=0是本身应该满足的约束,▽xL(x*)=0和之前的拉格朗日乘数法一样。唯一多了关于gi (x)的条件:

KKT条件只是取得极值的必要条件而不是充分条件。在机器学习中用到KKT条件的地方有:

  • 支持向量机(SVM)

数值优化算法

前面讲述的三种方法在理论推导、某些可以得到方程组的求根公式的情况(如线性函数,正态分布的最大似然估计)中可以使用,但对绝大多数函数来说,梯度等于0的方程组是没法直接解出来的,如方程里面含有指数函数、对数函数之类的超越函数。对于这种无法直接求解的方程组,我们只能采用近似的算法来求解,即数值优化算法。这些数值优化算法一般都利用了目标函数的导数信息,如一阶导数和二阶导数。如果采用一阶导数,则称为一阶优化算法。如果使用了二阶导数,则称为二阶优化算法。

工程上实现时通常采用的是迭代法,它从一个初始点x0开始,反复使用某种规则从xk移动到下一个点xk+1,构造这样一个数列,直到收敛到梯度为0的点处。即有下面的极限成立:

这些规则一般会利用一阶导数信息即梯度;或者二阶导数信息即Hessian矩阵。这样迭代法的核心是得到这样的由上一个点确定下一个点的迭代公式:

梯度下降法

梯度下降法沿着梯度的反方向进行搜索,利用了函数的一阶导数信息。梯度下降法的迭代公式为:

根据函数的一阶泰勒展开,在负梯度方向,函数值是下降的。只要学习率设置的足够小,并且没有到达梯度为0的点处,每次迭代时函数值一定会下降。需要设置学习率为一个非常小的正数的原因是要保证迭代之后的xk+1位于迭代之前的值xk的邻域内,从而可以忽略泰勒展开中的高次项,保证迭代时函数值下降。

梯度下降法及其变种在机器学习中应用广泛,尤其是在深度学习中。(可以扩展阅读:一文概览神经网络优化算法

动量项

为了加快梯度下降法的收敛速度,减少震荡,引入了动量项。动量项累积了之前迭代时的梯度值,加上此项之后的参数更新公式为:

其中Vt+1是动量项,它取代了之前的梯度项。动量项的计算公式为:

它是上一时刻的动量项与本次梯度值的加权平均值,其中α是学习率,μ是动量项系数。如果按照时间t进行展开,则第t次迭代时使用了从1到t次迭代时的所有梯度值,且老的梯度值安μt的系数指数级衰减:

动量项累积了之前迭代时的梯度值,使得本次迭代时沿着之前的惯性方向向前走。

AdaGrad算法

AdaGrad算法是梯度下降法最直接的改进。梯度下降法依赖于人工设定的学习率,如果设置过小,收敛太慢,而如果设置太大,可能导致算法那不收敛,为这个学习率设置一个合适的值非常困难。

AdaGrad算法根据前几轮迭代时的历史梯度值动态调整学习率,且优化变量向量X的每一个分量xi都有自己的学习率。参数更新公式为:

其中α是学习因子,gt是第t次迭代时参数的梯度向量,ε是一个很小的正数,为了避免除0操作,下标i表示向量的分量。和标准梯度下降法唯一不同的是多了分母中的这一项,它累积了到本次迭代为止梯度的历史值信息用于生成梯度下降的系数值。根据上式,历史导数值的绝对值越大分量学习率越小,反之越大。虽然实现了自适应学习率,但这种算法还是存在问题:需要人工设置一个全局的学习率α,随着时间的累积,上式中的分母会越来越大,导致学习率趋向于0,参数无法有效更新。

RMSProp算法

RMSProp算法是对AdaGrad的改进,避免了长期累积梯度值所导致的学习率趋向于0的问题。具体做法是由梯度值构造一个向量RMS,初始化为0,按照衰减系数累积了历史的梯度平方值。更新公式为:

AdaGrad直接累加所有历史梯度的平方和,而这里将历史梯度平方值按照δt衰减之后再累加。参数更新公式为:

其中δ是人工设定的参数,与AdaGrad一样,这里也需要人工指定的全局学习率α。

AdaDelta算法

AdaDelta算法也是对AdaGrad的改进,避免了长期累积梯度值所导致的学习率趋向于0的问题,另外,还去掉了对人工设置的全局学习率的依赖。假设要优化的参数为x,梯度下降法第t次迭代时计算出来的参数梯度值为gt。算法首先初始化如下两个向量为0向量:

其中E[g2]是梯度平方(对每个分量分别平分)的累计值,更新公式为:

在这里g2是向量每个元素分别计算平方,后面所有的计算公式都是对向量的每个分量进行。接下来计算如下RMS量:

这也是一个向量,计算时分别对向量的每个分量进行。然后计算参数的更新值:

RMS[Δx]t-1的计算公式和这个类似。这个更新值同样通过梯度来构造,只不过学习率是通过梯度的历史值确定的。更新公式为:

参数更新的迭代公式为:

Adam算法

Adam算法整合了自适应学习率与动量项。算法用梯度构造了两个向量m和v,前者为动量项,后者累积了梯度的平方和,用于构造自适应学习率。它们的初始值为0,更新公式为:

其中β1,β2是人工指定的参数,i为向量的分量下标。依靠这两个值构造参数的更新值,参数的更新公式为:

在这里,m类似于动量项,用v来构造学习率。

随机梯度下降法

假设训练样本集有N个样本,有监督学习算法训练时优化的目标是这个数据集上的平均损失函数:

其中L(w,xi,yi )是对单个训练样本(xi,yi )的损失函数,w是需要学习的参数,r(w)是正则化项,λ是正则化项的权重。在训练样本数很大时,如果训练时每次迭代都用所有样本,计算成本太高,作为改进可以在每次迭代时选取一批样本,将损失函数定义在这些样本上。

批量随机梯度下降法在每次迭代中使用上面目标函数的随机逼近值,即只使用M《N个随机选择的样本来近似计算损失函数。在每次迭代时要优化的目标函数变为:

随机梯度下降法在概率意义下收敛。

牛顿法

牛顿法是二阶优化技术,利用了函数的一阶和二阶导数信息,直接寻找梯度为0的点。牛顿法的迭代公式为:

其中H为Hessian矩阵,g为梯度向量。牛顿法不能保证每次迭代时函数值下降,也不能保证收敛到极小值点。在实现时,也需要设置学习率,原因和梯度下降法相同,是为了能够忽略泰勒展开中的高阶项。学习率的设置通常采用直线搜索(line search)技术。

在实现时,一般不直接求Hessian矩阵的逆矩阵,而是求解下面的线性方程组:

其解d称为牛顿方向。迭代终止的判定依据是梯度值充分接近于0,或者达到最大指定迭代次数。

牛顿法比梯度下降法有更快的收敛速度,但每次迭代时需要计算Hessian矩阵,并求解一个线性方程组,运算量大。另外,如果Hessian矩阵不可逆,则这种方法失效。

牛顿法在logistic回归,AdaBoost算法等机器学习算法中有实际应用。

拟牛顿法

牛顿法在每次迭代时需要计算出Hessian矩阵,并且求解一个以该矩阵为系数矩阵的线性方程组,Hessian矩阵可能不可逆。为此提出了一些改进的方法,典型的代表是拟牛顿法。拟牛顿法的思路是不计算目标函数的Hessian矩阵然后求逆矩阵,而是通过其他手段得到一个近似Hessian矩阵逆的矩阵。具体做法是构造一个近似Hessian矩阵或其逆矩阵的正定对称矩阵,用该矩阵进行牛顿法的迭代。

所有这些主要的数值优化算法都可以在SIGAI云端实验室上免费完成实验:

www.sigai.cn

通过构造目标函数,指定优化算法的参数与初始化迭代值,可以可视化的显示出算法的运行过程,并对不同参数时的求解结果进行比较。

可信域牛顿法

标准牛顿法可能不会收敛到一个最优解,也不能保证函数值会按照迭代序列递减。解决这个问题可以通过调整牛顿方向的步长来实现,目前常用的方法有两种:直线搜索和可信区域法。可信域牛顿法是截断牛顿法的一个变种,用于求解带界限约束的最优化问题。在可信域牛顿法的每一步迭代中,有一个迭代序列xk,一个可信域的大小Δk,以及一个二次目标函数:

这个式子可以通过泰勒展开得到,忽略二次以上的项,这是对函数下降值:

的近似。算法寻找一个sk,在满足约束条件||S||<=Δk下近似最小化qk(S)。接下来检查如下比值以更新wk和Δk:

这是函数值的实际减少量和二次近似模型预测方向导致的函数减少量的比值。根据之前的计算结果,再动态调整可信域的大小。

可信域牛顿法在logistic回归,线性支持向量的求解时有实际的应用,具体可以阅读liblinear开源库。

分治法

分治法是一种算法设计思想,它将一个大的问题分解成子问题进行求解。根据子问题解构造出整个问题的解。在最优化方法中,具体做法是每次迭代时只调整优化向量的一部分分量,其他的分量固定住不动。

坐标下降法

坐标下降法的基本思想是每次对一个变量进行优化,这是一种分治法。假设要求解的优化问题为;

坐标下降法求解流程为每次选择一个分量xi进行优化,将其他分量固定住不动,这样将一个多元函数的极值问题转换为一元函数的极值问题。如果要求解的问题规模很大,这种做法能有效的加快速度。

坐标下降法在logistic回归,线性支持向量的求解时有实际的应用,具体可以阅读liblinear开源库。

SMO算法

SMO算法也是一种分治法,用于求解支持向量机的对偶问题。加上松弛变量和核函数后的对偶问题为:

SMO算法的核心思想是每次在优化变量中挑出两个分量αi 和 αj进行优化,让其他分量固定,这样能保证满足等式约束条件。之所以要选择两个变量进行优化而不是选择一个变量,是因为这里有等式约束,如果只调整一个变量的值,将会破坏等式约束。

假设选取的两个分量为αi 和 αj,其他分量都固定即当成常数。对这两个变量的目标函数是一个二元二次函数。这个问题还带有等式和不等式约束条件。对这个子问题可以直接求得公式解,就是某一区间内的一元二次函数的极值。

分阶段优化

分阶段优化的做法是在每次迭代时,先固定住优化变量X一部分分量a不动,对另外一部分变量b进行优化;然后再固定住b不动,对b进行优化。如此反复,直至收敛到最优解处。

AdaBoost算法是这种方法的典型代表。AdaBoost算法在训练时采用了指数损失函数:

由于强分类器是多个弱分类器的加权和,代入上面的损失函数中,得到算法训练时要优化的目标函数为:

这里将指数损伤函数拆成了两部分,已有的强分类器Fj−1,以及当前弱分类器f对训练样本的损失函数,前者在之前的迭代中已经求出,因此可以看成常数。这样目标函数可以简化为:

其中:

这个问题可以分两步求解,首先将弱分类器权重β看成常数,得到最优的弱分类器f。得到弱分类器之后,再优化它的权重系数β。

动态规划算法

动态规划也是一种求解思想,它将一个问题分解成子问题求解,如果整个问题的某个解是最优的,则这个解的任意一部分也是子问题的最优解。这样通过求解子问题,得到最优解,逐步扩展,最后得到整个问题的最优解。

隐马尔可夫模型的解码算法(维特比算法),强化学习中的动态规划算法是这类方法的典型代表,此类算法一般是离散变量的优化,而且是组合优化问题。前面讲述的基于导数的优化算法都无法使用。动态规划算法能高效的求解此类问题,其基础是贝尔曼最优化原理。一旦写成了递归形式的最优化方程,就可以构造算法进行求解。

推荐阅读

👉pandas进阶宝典

👉数据挖掘实战项目

👉机器学习入门

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2023-07-15,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 Python数据科学 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
机器学习常见算法总结
决策树算法 根据数据属性,采用树状结构建立决策模型。常用来解决分类和回归问题。 常见算法:CART(Classification And Regression Tree),ID3,C4.5,随机森林等 回归算法 对连续值预测,如逻辑回归LR等 分类算法 对离散值预测,事前已经知道分类,如k-近邻算法 聚类算法 对离散值预测,事前对分类未知,如k-means算法 神经网络 模拟生物神经网络,可以用来解决分类和回归问题 感知器神经网络(Perceptron Neural Network) ,反向传递(Back Propagation)和深度学习(DL) 集成算法 集成几种学习模型进行学习,将最终预测结果进行汇总 Boosting、Bagging、AdaBoost、随机森林 (Random Forest) 等
AomanHao
2022/01/14
5590
机器学习常见算法总结
一文概览神经网络优化算法
机器学习的优化(目标),简单来说是:搜索模型的一组参数 w,它能显著地降低代价函数 J(w),该代价函数通常包括整个训练集上的性能评估(经验风险)和额外的正则化(结构风险)。与传统优化不同,它不是简单地根据数据的求解最优解,在大多数机器学习问题中,我们关注的是测试集(未知数据)上性能度量P的优化。
算法进阶
2022/06/02
1.1K0
一文概览神经网络优化算法
机器学习中的最优化算法总结
对于几乎所有机器学习算法,无论是有监督学习、无监督学习,还是强化学习,最后一般都归结为求解最优化问题。因此,最优化方法在机器学习算法的推导与实现中占据中心地位。在这篇文章中,SIGAI将对机器学习中所使用的优化算法做一个全面的总结,并理清它们直接的脉络关系,帮你从全局的高度来理解这一部分知识。
SIGAI学习与实践平台
2018/08/24
6.5K0
机器学习中的最优化算法总结
机器学习与深度学习中的数学知识点汇总
在机器学习与深度学习中需要大量使用数学知识,这是给很多初学带来困难的主要原因之一。此前SIGAI的公众号已经写过“学好机器学习需要哪些数学知识”的文章,由于时间仓促,还不够完整。今天重新整理了机器学习与深度学习中的主要知识点,做到精准覆盖,内容最小化,以减轻学习的负担同时又保证学习的效果。这些知识点是笔者长期摸索总结出来的,相信弄懂了这些数学知识,数学将不再成为你学好机器学习和深度学习的障碍。
SIGAI学习与实践平台
2019/09/11
1.3K0
机器学习与深度学习中的数学知识点汇总
【数学应用】机器学习常用最优化算法小结
本文主要是从通俗直观的角度对机器学习中的无约束优化算法进行对比归纳,详细的公式和算法过程可以看最后附的几个链接,都是干货。 机器学习基本概念 统计机器学习整个流程就是:基于给定的训练数据集,由实际需求,需要解决的问题来选择合适的模型;再根据确定学习策略,是最小化经验风险,还是结构风险,即确定优化目标函数;最后便是采用什么样的学习算法,或者说优化算法来求解最优的模型。参照《统计机器学习方法》所讲,统计机器学习(特指有监督学习)的三要素为: 1)模型 模型是指基于训练数据集,所要学习到的概率分布
陆勤_数据人网
2018/02/27
1.8K0
机器学习中常用优化算法介绍
作者 | Walker 编辑 | 磐石 出品 | 磐创AI技术团队 【磐创AI导读】:本文主要介绍了常用的一些机器学习中常用的优化算法。想要学习更多的机器学习知识,欢迎大家点击上方蓝字关注我们的公众号:磐创AI。 在机器学习的世界中,通常我们会发现有很多问题并没有最优的解,或是要计算出最优的解要花费很大的计算量,面对这类问题一般的做法是利用迭代的思想尽可能的逼近问题的最优解。我们把解决此类优化问题的方法叫做优化算法,优化算法本质上是一种数学方法,常见的优化算法包括梯度下降法、牛顿法、Momentum, N
磐创AI
2018/07/20
9720
图解AI数学基础 | 微积分与最优化
教程地址:http://www.showmeai.tech/tutorials/83
ShowMeAI
2022/02/25
5970
图解AI数学基础 | 微积分与最优化
机器学习-12:MachineLN之优化算法
其实很多时候应该审视一下自己,知道自己的不足和长处,然后静下来去做一些事情,只有真正静下来才能深下去,只有深下去了才能有所突破,不要被别人的脚步带跑,无论什么时候专而精更重要,同时我也知自己的不足,有点狂、有点浮躁、坚持自己观点喜欢争论、说话有时候伤人等等,但是我的优点也正在此(下面是05年9月份写的《自己-社会-机器学习》的一篇文章,虽然有点浮躁,但是值得我再去回顾):感觉自己成长了不少,不再抱怨,不再发脾气,不再那么要强,不再看重别人的眼光,更加注重自己的评价,开始接受一些事情,棱角开始慢慢圆滑,但是我了解自己,是绝不会消失,有些东西决不能随波逐流,社会锻炼了我们,最终也会将越来越好的自己放到社会中实践,这是一个无限循环的事情,最后的结果就是社会和我们都将越来越好,这也是一个漫长的过程,也需要充足的空间给我们释放,这就要看你的程序的时间复杂度和空间复杂度,这个好了,过程就会快一点,其实想一下,很多时候,我们就是在找一个最优解,但是社会的进步估计我们永远找到的也只能是局部最优了吧,也就是说在某个时间段我们尽最大可能想到的最好决策,至于全局最优解,这个问题还真是个无人能解的问题吧,马克思列宁提的共产主义可能就是我们最想要的那个损失函数的最小值,但是怎么能找到那个最适合的权重呢,来达到全局最优,值得思考?我们可能要像梯度下降那样了,慢慢的来调节权重,达到某阶段的最优,当然大神们都有自己的方法,这点不能否认,但是弯路是要走的,不如把眼光放长远,让我们一起期待。
MachineLP
2022/05/09
4240
机器学习-12:MachineLN之优化算法
『 机器学习笔记』最优化方法
最优化方法是研究在给定约束之下如何寻求某些因素(的量),以使某一(或某些)指标达到最优的一些学科的总称。 机器学习的问题大多可以建模成一种最优化模型求解,常见最优化方法有梯度下降法,牛顿法和拟牛顿法,启发式优化算法(PSO, ABC等)。
百川AI
2021/10/19
5390
机器学习中牛顿法凸优化的通俗解释
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/red_stone1/article/details/80821760
红色石头
2019/05/25
8700
最全的机器学习中的优化算法介绍
在机器学习中,有很多的问题并没有解析形式的解,或者有解析形式的解但是计算量很大(譬如,超定问题的最小二乘解),对于此类问题,通常我们会选择采用一种迭代的优化方式进行求解。
大数据技术与机器学习
2021/04/01
1.1K0
最全的机器学习中的优化算法介绍
机器学习优化算法(一)
我们在前面说过机器学习中的损失函数,其实机器学习中的每一个模型都是在求损失函数的最优解,即让损失达到最小值/极小值,求解方式有多种,本篇讲讲其中两个基本的优化方法:
张俊红
2018/10/08
1.1K0
机器学习优化算法(一)
从浅层模型到深度模型:概览机器学习优化算法
选自arxiv 机器之心编译 参与:乾树、蒋思源 学习算法一直以来是机器学习能根据数据学到知识的核心技术。而好的优化算法可以大大提高学习速度,加快算法的收敛速度和效果。该论文从浅层模型到深度模型纵览监
机器之心
2018/05/08
1.1K0
从浅层模型到深度模型:概览机器学习优化算法
学好机器学习需要哪些数学知识?
“ 随机过程,实分析。机器学习往深里做肯定需要用这种,高级的数学语言去对问题进行描述。我本人对随机和实分析,其实目前也还只是略懂,很难说,真正的彻底掌握这两门十分强大的数学工具。”
SIGAI学习与实践平台
2018/08/07
1.6K0
学好机器学习需要哪些数学知识?
机器学习1--线性回归模型
3),给定x, 残差e_i要服从正态分布(Normal Distribution);
用户5473628
2019/08/08
7470
机器学习与深度学习核心知识点总结--写在校园招聘即将开始时
一年一度的校园招聘就要开始了,为了帮助同学们更好的准备面试,SIGAI 在今天的公众号文章中对机器学习、深度学习的核心知识点进行了总结。希望我们的文章能够帮助你顺利的通过技术面试,如果你对这些问题有什么疑问,可以关注我们的公众号,向公众号发消息,我们将会无偿为你解答。对于不想在近期内找工作的同学,阅读这篇文章,对加深和巩固机器学习和深度学习的知识也是非常有用的。
SIGAI学习与实践平台
2018/08/21
4450
机器学习与深度学习核心知识点总结--写在校园招聘即将开始时
机器学习_最优化
是关于Θ的一个函数,我们当前所处的位置为Θ0点,要从这个点走到J的最小值点\nabla 是梯度,\alpha是学习率或者步长
AomanHao
2022/01/13
6880
机器学习&深度学习的算法概览
根据样本数据是否带有标签值,可以将机器学习算法分成有监督学习和无监督学习两类。有监督学习的样本数据带有标签值,它从训练样本中学习得到一个模型,然后用这个模型对新的样本进行预测推断。有监督学习的典型代表是分类问题和回归问题。
算法进阶
2023/08/28
6630
机器学习&深度学习的算法概览
【Math】常见的几种最优化方法
https://www.cnblogs.com/maybe2030/p/4751804.html
智能算法
2019/07/12
1.5K0
【Math】常见的几种最优化方法
理解凸优化
凸优化(convex optimization)是最优化问题中非常重要的一类,也是被研究的很透彻的一类。对于机器学习来说,如果要优化的问题被证明是凸优化问题,则说明此问题可以被比较好的解决。在本文中,SIGAI将为大家深入浅出的介绍凸优化的概念以及在机器学习中的应用。
SIGAI学习与实践平台
2018/08/07
1.2K0
理解凸优化
相关推荐
机器学习常见算法总结
更多 >
领券
社区富文本编辑器全新改版!诚邀体验~
全新交互,全新视觉,新增快捷键、悬浮工具栏、高亮块等功能并同时优化现有功能,全面提升创作效率和体验
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档
查看详情【社区公告】 技术创作特训营有奖征文