专栏首页张俊红时间序列数据(上)

时间序列数据(上)

总第92篇

01|时间序列定义:

时间序列是按照一定的时间间隔排列的一组数据,其时间间隔可以是任意的时间单位,如小时、日、周月等。比如,不同时间段某产品的用户数量,以及某个在网站的用户行为,这些数据形成了以一定时间间隔的数据。

人们希望通过对这些时间序列的分析,从中发现和揭示现象发展变化的规律,尽可能多地从中提取所需要的信息,并将这些知识和信息用于预测,以掌握和预测未来行为。对于时间序列的预测,由于很难确定它与其他变量之间的关系,这时我们就不能用回归去预测,而应使用时间序列方法进行预测。

采用时间序列分析进行预测时需要一系列的模型,这种模型称为时间序列模型。在使用这种模型时,总是假定某一种数据变化趋势是会重复发生的

02|时间序列分析的用途:

  1. 系统描述,根据对系统进行观测得到的时间序列数据,用曲线进行拟合,得到客观的描述;比如2017年A产品销量的时间序列曲线是逐渐上涨的一个趋势。
  2. 系统分析,当观测值取自于两个以上的变量时,可用一个时间序列中的变化去说明另一个时间序列中的变化,以此来说明两个变量随时间的变化情况;典型的例子就是,随着时间推移,新上市产品A的销量逐渐上涨,B产品销量逐渐下滑。
  3. 预测未来,通过对过去的时间序列数据进行拟合,预测未来某一时间段的数据;典型的销量预测。
  4. 决策和控制,根据时间序列模型可调整输入变量使系统发展过程保持一个持续上升的状态,预测到要偏离目标值时进行及时控制;典型的拿用户生命周期来说,尽可能缩短用户的成长周期,尽可能的延迟用户衰退期的到来。

03|时间序列的组成因素:

时间序列的变化受多种因素的影响,我们将众多影响因素按照对现象变化影响的类型,以揭示时间序列的变动规律性,划分成如下几种因素:

  1. 趋势性,指现象随着时间的推移朝着一定方向呈现出持续上升、下降或平稳的变化或移动。
  2. 周期性,指现象随着时间序列的变化呈现出周期性的变化,就像正余弦函数那样。
  3. 不规则变化,指现象受偶然因素的影响而呈现出不规则的波动。

04|时间序列的分类:

  1. 按所研究对象的多少分,有一元时间序列和多元时间序列。如果某种产品一年的销量数据数据就是一元序列;如果研究的序列不仅仅是一个数列,而是多个变量,即一个时间点对应多个变量时,这种序列称为多元时间序列,比如一天中某一时刻的气温、气压和雨量。
  2. 按时间的连续性分,可将时间序列分为离散型时间序列和连续时间序列。
  3. 按序列的统计特性分,有平稳时间序列和非平稳时间序列,所谓平稳就是随着时间的推移,数据并未发生大的波动。
  4. 按序列的分布规律分,有高斯型和非高斯型时间序列两种。

这篇只是对时间序列做一个简单的介绍,关于时间序列的分析方法还在研究阶段,以后再来补上。

本文分享自微信公众号 - 张俊红(zhangjunhong0428),作者:张俊红

原文出处及转载信息见文内详细说明,如有侵权,请联系 yunjia_community@tencent.com 删除。

原始发表时间:2018-01-07

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • 时间序列预测(上)

    预测是时间序列相关知识中比较重要的一个应用场景。我们在前面说过时间序列数据(上),时间序列可以分为平稳时间序列与非平稳时间序列两种。今天这一篇就主要介绍下《平稳...

    张俊红
  • 当我们和业务在讨论“预测”时,到底在讨论什么?

    所谓“预测”,统计学上是有精确定义的:是对事物的发展趋势和在未来时期的数量表现做出推测和估计的理论和技术——它是一个概率结论。可是当你在百度上搜索“预测”这个关...

    张俊红
  • 『对比Excel,轻松学习Python数据分析』新书发布

    之前在公众号提过,我写了一本书,现在这本书终于面世了,这本书就是『对比Excel,轻松学习Python数据分析』,这本书是写什么的,以及这本书怎么写的,相信大家...

    张俊红
  • 时间序列分析:对非平稳时间序列进行建模

    编者按 曾经有位小伙伴在公众号留言提问:如何做时间序列分析?最近C君发现了一篇文章,也许可以解答这个问题,收录在此,以飨读者。本文来自于数据人网。 如果你有数据...

    CDA数据分析师
  • 如何把时间序列问题转化为监督学习问题?通俗易懂的 Python 教程

    AI 研习社按:本文作者 Jason Brownlee 为澳大利亚知名机器学习专家,对时间序列预测尤有心得。原文发布于其博客。AI 研习社编译。 ? Jaso...

    AI研习社
  • 开发 | 如何把时间序列问题转化为监督学习问题?通俗易懂的 Python 教程

    AI科技评论按:本文作者 Jason Brownlee 为澳大利亚知名机器学习专家,对时间序列预测尤有心得。原文发布于其博客。 Jason Brownlee ...

    AI科技评论
  • 【Time Series】时间序列基本概念

    最近一直在接触时间序列,所以打算写一些有关时间序列的文章,预测部分会从规则开始、到传统模型、到机器学习、再到深度学习,此外也会介绍一些时间序列的基本概念,包括自...

    阿泽 Crz
  • 序列预测问题的简单介绍

    序列预测与其他类型的监督学习问题不同。这个序列在观察结果上被强加了一个命令:当训练模型和做预测时序列必须保存。通常,包含序列数据的预测问题被称为序列预测问题,尽...

    AiTechYun
  • 2️⃣ 双序列比对(1):算法及数据库

    注意:动态规划和BLAST适用于不同比对情况。前者适合较少量序列间比对,BLAST适合从一组大量序列中搜索与查询相似的序列

    Y大宽
  • 数据分析之时间序列分析

    顾名思义,时间序列就是按照时间顺利排列的一组数据序列。时间序列分析就是发现这组数据的变动规律并用于预测的统计技术。该技术有以下三个基本特点:

    黄成甲

扫码关注云+社区

领取腾讯云代金券