Loading [MathJax]/jax/output/CommonHTML/config.js
前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
社区首页 >专栏 >时间序列数据(上)

时间序列数据(上)

作者头像
张俊红
发布于 2018-04-11 07:06:53
发布于 2018-04-11 07:06:53
1.6K0
举报
文章被收录于专栏:张俊红张俊红

总第92篇

01|时间序列定义:

时间序列是按照一定的时间间隔排列的一组数据,其时间间隔可以是任意的时间单位,如小时、日、周月等。比如,不同时间段某产品的用户数量,以及某个在网站的用户行为,这些数据形成了以一定时间间隔的数据。

人们希望通过对这些时间序列的分析,从中发现和揭示现象发展变化的规律,尽可能多地从中提取所需要的信息,并将这些知识和信息用于预测,以掌握和预测未来行为。对于时间序列的预测,由于很难确定它与其他变量之间的关系,这时我们就不能用回归去预测,而应使用时间序列方法进行预测。

采用时间序列分析进行预测时需要一系列的模型,这种模型称为时间序列模型。在使用这种模型时,总是假定某一种数据变化趋势是会重复发生的

02|时间序列分析的用途:

  1. 系统描述,根据对系统进行观测得到的时间序列数据,用曲线进行拟合,得到客观的描述;比如2017年A产品销量的时间序列曲线是逐渐上涨的一个趋势。
  2. 系统分析,当观测值取自于两个以上的变量时,可用一个时间序列中的变化去说明另一个时间序列中的变化,以此来说明两个变量随时间的变化情况;典型的例子就是,随着时间推移,新上市产品A的销量逐渐上涨,B产品销量逐渐下滑。
  3. 预测未来,通过对过去的时间序列数据进行拟合,预测未来某一时间段的数据;典型的销量预测。
  4. 决策和控制,根据时间序列模型可调整输入变量使系统发展过程保持一个持续上升的状态,预测到要偏离目标值时进行及时控制;典型的拿用户生命周期来说,尽可能缩短用户的成长周期,尽可能的延迟用户衰退期的到来。

03|时间序列的组成因素:

时间序列的变化受多种因素的影响,我们将众多影响因素按照对现象变化影响的类型,以揭示时间序列的变动规律性,划分成如下几种因素:

  1. 趋势性,指现象随着时间的推移朝着一定方向呈现出持续上升、下降或平稳的变化或移动。
  2. 周期性,指现象随着时间序列的变化呈现出周期性的变化,就像正余弦函数那样。
  3. 不规则变化,指现象受偶然因素的影响而呈现出不规则的波动。

04|时间序列的分类:

  1. 按所研究对象的多少分,有一元时间序列和多元时间序列。如果某种产品一年的销量数据数据就是一元序列;如果研究的序列不仅仅是一个数列,而是多个变量,即一个时间点对应多个变量时,这种序列称为多元时间序列,比如一天中某一时刻的气温、气压和雨量。
  2. 按时间的连续性分,可将时间序列分为离散型时间序列和连续时间序列。
  3. 按序列的统计特性分,有平稳时间序列和非平稳时间序列,所谓平稳就是随着时间的推移,数据并未发生大的波动。
  4. 按序列的分布规律分,有高斯型和非高斯型时间序列两种。

这篇只是对时间序列做一个简单的介绍,关于时间序列的分析方法还在研究阶段,以后再来补上。

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2018-01-07,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 俊红的数据分析之路 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
R中季节性时间序列分析及非季节性时间序列分析
①SAM(Simple Moving Average) 简单移动平均,将时间序列上前n个数值做简单的算术平均。 SMAn=(x1+x2+…xn)/n
Erin
2022/05/09
1.8K0
R中季节性时间序列分析及非季节性时间序列分析
京东研究院实战分享:时间序列用户生命周期的聚类方法
摘要:本文介绍了京东成都研究院在实际项目中使用时间序列聚类算法时产生的疑惑和解决思路。京东选用了DTW作为时间序列的计算的方法,但在实际运行过程中,发现DTW的运算速度确实比较慢,目前正在实验提升它效率的方法。 时间序列和时间序列分析分别是什么?引用百度百科的解释:时间序列是指将某种现象某一个统计指标在不同时间上的各个数值,按时间先后顺序排列而形成的序列。而时间序列分析(Time series analysis)是一种动态数据处理的统计方法。该方法基于随机过程理论和数理统计学方法,研究随机数据序列所遵从的统
用户1737318
2018/06/05
1.8K0
MADlib——基于SQL的数据挖掘解决方案(20)——时间序列分析之ARIMA
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/wzy0623/article/details/79310475
用户1148526
2019/05/25
1.1K0
【Time Series】时间序列基本概念
最近一直在接触时间序列,所以打算写一些有关时间序列的文章,预测部分会从规则开始、到传统模型、到机器学习、再到深度学习,此外也会介绍一些时间序列的基本概念,包括自相关、平稳性、滞后性、季节性等。
阿泽 Crz
2020/08/04
2.2K0
【Time Series】时间序列基本概念
重要的数据分析方法:时间序列分析
时间序列分析是一种重要的数据分析方法,用于处理随时间变化的数据。在Python数据分析中,有许多强大的工具和技术可用于进行时间序列分析。本文将详细介绍Python数据分析中时间序列分析的高级技术点,包括时间序列预处理、模型建立、预测和评估等。
网络技术联盟站
2023/07/03
7810
重要的数据分析方法:时间序列分析
时间序列预测方法最全总结!
时间序列预测就是利用过去一段时间的数据来预测未来一段时间内的信息,包括连续型预测(数值预测,范围估计)与离散型预测(事件预测)等,具有非常高的商业价值。
Datawhale
2021/03/12
28.6K1
时间序列预测方法最全总结!
最全总结【时间序列】时间序列的预处理和特征工程
时间序列(Time Series)是按时间顺序排列的一组数据点,通常用于描述和分析随时间变化的现象。时间序列数据在许多领域中都有广泛应用,如金融市场、气象学、经济学、医学等。
机器学习司猫白
2025/01/21
4350
最全总结【时间序列】时间序列的预处理和特征工程
实习生的监控算法: 利用时间序列模型进行曲线预测
本文主要探讨了时间序列分析在监控告警系统中的应用,通过处理原始数据、进行平稳性检验、模型选择和预测等步骤,最终使用ARMA模型进行预测,取得较好的效果。预测准确度达到93.3097%。同时,文章也指出了时间序列分析在预测过程中可能遇到的问题,如过拟合等,并建议在进行时间序列分析时采用更多的数据探索方法,如信息量法则等,以提高预测的准确性。
解飞
2017/07/26
5.3K0
实习生的监控算法: 利用时间序列模型进行曲线预测
MATLAB中的时间序列分析
时间序列分析是统计学和数据科学中的一个重要领域,它涉及对时间序列数据的建模和预测。MATLAB作为一种强大的计算和可视化工具,为时间序列分析提供了丰富的功能和工具箱。本篇文章将介绍MATLAB中的时间序列分析,包括预测与建模的基本概念,并提供相应的代码实例以加深理解。
一键难忘
2025/01/16
1760
15种时间序列预测方法总结(包含多种方法代码实现)
在这篇文章中,我们将深入探讨时间序列预测的基本概念和方法。我们将首先介绍单元预测和多元预测的概念,然后详细介绍各种深度学习和传统机器学习方法如何应用于时间序列预测,包括循环神经网络(RNN)、一维卷积神经网络(1D-CNN)、Transformer、自回归模型(AR)、状态空间模型、支持向量机(SVM)和随机森林(RF)等。我们还会讨论这些方法在单元预测和多元预测中的适用性。
机器学习AI算法工程
2024/04/30
8.3K0
15种时间序列预测方法总结(包含多种方法代码实现)
小白学数据 | 除了计算大姨妈周期,时间序列分析还有什么用
大数据文摘作品,转载要求见文末 作者 | Lizyjieshu 审校 | Aileen,行者 据说最贴心的男票是会记录下女票每一次大姨妈来的时间,然后绘制成一张月份折线图以监测女票的身体健康(以避开无法啪啪啪的时间)。你知不知道,这张图其实就是一个时间序列图,你看图预测未来几个月女票的大姨妈时间就叫做时间序列分析…… 咳咳,言归正传,时间序列分析是一种广泛应用的数据处理统计方法,除了计算大姨妈周期,在实际很生活还有很多应用,小白今天就来带大家探探究竟。 小白问:时间序列分析就是分析时间的么? 答:你是
大数据文摘
2018/05/22
1.3K0
python数据分析——时间序列
时间序列是按照时间顺序排列的一系列随时间变化而变化的数据点或观测值。时间序列可以是离散的,例如每月的销售数据,也可以是连续的,例如气温和股票价格等。时间序列常用于预测和分析未来的趋势,例如经济增长、股票走势、天气变化等。
鲜于言悠
2024/03/20
2460
python数据分析——时间序列
数据分析之时间序列分析
顾名思义,时间序列就是按照时间顺利排列的一组数据序列。时间序列分析就是发现这组数据的变动规律并用于预测的统计技术。该技术有以下三个基本特点:
黄成甲
2018/09/12
2.4K0
数据分析之时间序列分析
时间序列分析:对非平稳时间序列进行建模
编者按 曾经有位小伙伴在公众号留言提问:如何做时间序列分析?最近C君发现了一篇文章,也许可以解答这个问题,收录在此,以飨读者。本文来自于数据人网。 如果你有数据分析相关的问题,也可以公众号留言提问,说不定C君可以帮你找到答案。发现优质文章,也可以推荐给C君。祝,学习快乐~ 在这篇博客中,我将会简单的介绍一下时间序列分析及其应用。这里,我们将使用匹兹堡大学的教授David Stoffer所开发的R包astsa进行时间序列分析。而与之相关的课本,可以在Time Series Analysis and Its A
CDA数据分析师
2018/02/24
3.8K0
时间序列分析:对非平稳时间序列进行建模
一文解读时间序列基本概念
大家对时间序列知多少?何为时间序列、时间序列分析、时间序列分解、时间序列预测,以及时间序列预测都有哪些方法?
数据STUDIO
2021/10/14
2.2K0
一文解读时间序列基本概念
时间序列基础知识
所谓时间序列就是按照时间的顺序记录的一列有序数据。对时间序列进行观察、研究,找寻它变化发展的规律,预测它将来的走势就是时间序列分析。在日常生产、生活中,时间序列比比皆是,时间序列分析的应用领域非常广泛。
fireWang
2019/04/23
1.4K0
时间序列预测的20个基本概念总结
时间序列数据是有序的。这意味着观察/数据点依赖于以前的观察/数据点。因此,在模型训练期间,数据点顺序不会被打乱。
deephub
2023/08/30
7620
时间序列预测的20个基本概念总结
【Kaggle时间序列教程:时间序列入门之时间序列的线性回归(1)】
时间序列分析是数据科学和机器学习中的一个重要领域,广泛应用于金融、气象、销售预测等多个行业。然而,对于很多初学者来说,时间序列的概念和方法可能会显得有些复杂,尤其是如何构建模型、如何处理数据等。
机器学习司猫白
2025/01/21
1190
【Kaggle时间序列教程:时间序列入门之时间序列的线性回归(1)】
时间序列入门时间序列入门
时间序列(英语:time series)是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,12小时,7天,1年),因此时间序列可以作为离散时间数据进行分析处理
致Great
2021/12/10
1.3K0
深度学习时间序列的综述
摘要:时间序列一般是指对某种事物发展变化过程进行观测并按照一定频率采集得出的一组随机变量。时间序列预测的任务就是从众多数据中挖掘出其蕴含的核心规律并且依据已知的因素对未来的数据做出准确的估计。由于大量物联网数据采集设备的接入、多维数据的爆炸增长和对预测精度的要求愈发苛刻,导致经典的参数模型以及传统机器学习算法难以满足预测任务的高效率和高精度需求。近年来,以卷积神经网络、循环神经网络和 Transformer 模型为代表的深度学习算法在时间序列预测任务中取得了丰硕的成果。为进一步促进时间序列预测技术的发展,综述了时间序列数据的常见特性、数据集和模型的评价指标,并以时间和算法架构为研究主线,实验对比分析了各预测算法的特点、优势和局限;着重介绍对比了多个基于 Transformer 模型的时间序列预测方法;最后结合深度学习应用于时间序列预测任务存在的问题与挑战对未来该方向的研究趋势进行了展望。(文末附论文下载地址)
算法进阶
2023/08/28
8690
深度学习时间序列的综述
推荐阅读
相关推荐
R中季节性时间序列分析及非季节性时间序列分析
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档
查看详情【社区公告】 技术创作特训营有奖征文