前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
社区首页 >专栏 >随机变量的相关性与独立性

随机变量的相关性与独立性

原创
作者头像
yangzelong
修改于 2019-03-26 01:55:31
修改于 2019-03-26 01:55:31
3.1K0
举报
文章被收录于专栏:YzlWHUYzlWHU

相关性默认指的是线性相关关系。

语义上来讲,独立是指变量之间完全没有关系,但是不相关则仅要求变量之间没有线性关系,因而独立的要求更高,独立的变量一定是不相关的,但是不相关的不一定是独立的,即独立是不相关的充分不必要条件。

举例说明:X,Y均匀分布在单位圆上,因为是圆是对称的,画一条线性回归的线,线的斜率可以为任意值且均匀分布。所以X和Y是不相关的,但是X,Y不是独立的,因为X、Y的取值对彼此有决定性影响。

参考:

https://www.zhihu.com/question/26583332

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
机器学习数学基础:随机事件与随机变量
所谓机器学习和深度学习, 背后的逻辑都是数学, 所以数学基础在这个领域非常关键, 而统计学又是重中之重, 机器学习从某种意义上来说就是一种统计学习。
Datawhale
2020/07/02
1.1K0
正交-不相关-独立
本文介绍随机变量中正交、不相关、独立的区别和联系。 概述 三者均是描述随机变量之间关系的概念,看似都可以表示两个随机变量的疏远关系,但定义和约束均有不同。 考察m维随机变量X,Y之间的关系。 定义 正交 定义R(X, Y) = E[XY]为相关函数:若R(X, Y)=0,称X,Y正交 不相关 定义 E[XY] = E[X]E[Y],则X,Y不相关 X,Y的协方差: Cov(X,Y)=E[XY]- E[X]E[Y] 不相关也可以用协方差为0表示 X,Y的相关系数: r(X, Y)
为为为什么
2022/08/05
2K0
正交-不相关-独立
统计学-随机变量
我发现微积分,线性代数,概率,统计,这四个学科有点难舍难分。但是应该从微积分,线性代数这样学才是对的,不然你是看不懂统计和概率的。
云深无际
2024/08/21
1260
统计学-随机变量
挖掘数据内部联系:相关性分析
皮尔森相关系数也叫皮尔森积差相关系数,用来反映两个变量之间相似程度的统计量。或者说用来表示两个向量的相似度。
SYSU星空
2022/05/05
1.4K0
挖掘数据内部联系:相关性分析
数据科学基础(二) 随机变量及其分布
📚 文档目录 随机事件及其概率 随机变量及其分布 期望和方差 大数定律与中心极限定理 数理统计的基本概念 参数估计 假设检验 多维 回归分析和方差分析 降维 2.1 随机变量 将样本空间 \Omega 中的每个元素 e 与实数对应起来. 定义:设随机试验的样本空间为 S = \{e\}.\space X = X(e) 是定义在样本空间的实值单值函数. 称 X = X(e) 为随机变量. 2.3 离散型随机变量及其分布律 离散型随机变量定义: 有限个 无限可列个 满足条件: p_k\geq0,k=1,2…
Rikka
2022/01/19
7580
数据科学基础(二) 随机变量及其分布
概率论基础 - 4 - 协方差、相关系数、协方差矩阵
本文介绍协方差。 协方差 协方差表示的是两个变量的总体的误差,这与只表示一个变量误差的方差不同。 如果两个变量的变化趋势一致,也就是说如果其中一个大于自身的期望值,另外一个也大于自身的期望值,那么两个变量之间的协方差就是正值。 如果两个变量的变化趋势相反,即其中一个大于自身的期望值,另外一个却小于自身的期望值,那么两个变量之间的协方差就是负值。 —— 百度百科 定义 在概率论和统计学中,协方差用于衡量两个变量的总体误差。而方差是协方差的一种特殊情况,即当两个变量是相同的情况。 期望值分别为E[X
为为为什么
2022/08/05
1.3K0
概率论基础 - 4 - 协方差、相关系数、协方差矩阵
相关性分析的五种方法有哪些_数据相关性分析
相关分析(Analysis of Correlation)是网站分析中经常使用的分析方法之一。通过对不同特征或数据间的关系进行分析,发现业务运营中的关键影响及驱动因素。并对业务的发展进行预测。本篇文章将介绍5种常用的分析方法。在开始介绍相关分析之前,需要特别说明的是相关关系不等于因果关系。
全栈程序员站长
2022/11/15
20.6K0
相关性分析的五种方法有哪些_数据相关性分析
概率论04 随机变量
我们了解了“样本空间”,“事件”,“概率”。样本空间中包含了一次实验所有可能的结果,事件是样本空间的一个子集,每个事件可以有一个发生的概率。概率是集合的一个“测度”。 这一讲,我们将讨论随机变量。随机变量(random variable)的本质是一个函数,是从样本空间的子集到实数的映射,将事件转换成一个数值。根据样本空间中的元素不同(即不同的实验结果),随机变量的值也将随机产生。可以说,随机变量是“数值化”的实验结果。在现实生活中,实验结果可以是很“叙述性”,比如“男孩”,“女孩”。在数学家眼里,这些文字化
Vamei
2018/01/18
8920
概率论04 随机变量
为什么特征相关性非常的重要?
鹳会接生孩子吗?虽然它已经在相关性和因果关系的背景下得到了理论上的证明,但本文探讨了相关性以及它与因果关系的不同之处。
石晓文
2019/11/12
5.7K0
数据科学基础(四) 大数定律与中心极限定理
📚 文档目录 随机事件及其概率 随机变量及其分布 期望和方差 大数定律与中心极限定理 数理统计的基本概念 参数估计 假设检验 多维 回归分析和方差分析 降维 4.1 大数定律 大量重复实验的平均结果的稳定性. 4.1.1. 马尔可夫不等式 P\left\{X\geq a\right\}\leq\displaystyle\frac{EX}{a} 证明:EX=\displaystyle\int_0^{\infty}xf(x)dx=\int_a^{\infty}xf(x)dx+\int_0^{a}xf(x)dx
Rikka
2022/01/19
7360
数据科学基础(四) 大数定律与中心极限定理
利用协方差,Pearson相关系数和Spearman相关系数确定变量间的关系
数据集中的变量之间可能存在复杂且未知的关系。重要的是发现和量化数据集的变量相关的程度。这些知识可以帮你更好地准备数据,以满足机器学习算法的预期,例如线性回归,其性能会随着这些相关的出现而降低。
AiTechYun
2018/07/27
2K0
利用协方差,Pearson相关系数和Spearman相关系数确定变量间的关系
掌握机器学习数学基础之概率统计(二)
标题: 机器学习为什么要使用概率 概率学派和贝叶斯学派 何为随机变量和何又为概率分布? 条件概率,联合概率和全概率公式: 边缘概率 独立性和条件独立性 期望、方差、协方差和相关系数 常用概率分布 贝叶
企鹅号小编
2018/01/24
1.1K0
掌握机器学习数学基础之概率统计(二)
【机器学习笔记】:大话线性回归(二)
前一篇文章给大家介绍了线性回归的模型假设,损失函数,参数估计,和简单的预测。具体内容请看下面链接:【机器学习笔记】:大话线性回归(一)
Python数据科学
2018/12/10
1.9K0
【机器学习笔记】:大话线性回归(二)
线性回归(二)-违背基本假设的情况和处理方法
由线性回归(一)^1,我们通过数学中的极值原理推导出了一元线性回归的参数估计和多元线性回归的参数估计的拟合方程计算方法。同时为了检验拟合质量,我们引入了两种主要检验:
EatRice
2020/06/13
13.3K0
线性回归(二)-违背基本假设的情况和处理方法
入门 | 从PCC到MIC,一文教你如何计算变量之间的相关性
选自FreeCoderCamp 作者:Peter Gleeson 机器之心编译 参与:陈韵竹、程耀彤、刘晓坤 本文介绍了几个重要的变量相关性的度量,包括皮尔逊相关系数、距离相关性和最大信息系数等,并用简单的代码和示例数据展示了这些度量的适用性对比。 从信号的角度来看,这个世界是一个嘈杂的地方。为了弄清楚所有的事情,我们必须有选择地把注意力集中到有用的信息上。 通过数百万年的自然选择过程,我们人类已经变得非常擅长过滤背景信号。我们学会将特定的信号与特定的事件联系起来。 例如,假设你正在繁忙的办公室中打乒乓球
机器之心
2018/05/08
4K0
入门 | 从PCC到MIC,一文教你如何计算变量之间的相关性
多元统计分析:典型相关分析
类似PCA的做法: 每组 变量 中 选择 若干代表性 综合指标(变量的线性组合),通过 研究 两组 综合指标 间关系 来反映 两组变量间 相关关系 即 线性组合 之间的相关关系 步骤:
yiyun
2022/04/01
1K0
多元统计分析:典型相关分析
数据挖掘|R-相关性分析及检验
相关系数可以用来描述定量变量之间的关系。结果的正负号分别表明正相关或负相关,数值的大小则表示相关关系的强弱程度。
生信补给站
2020/08/06
2.4K0
随机变量的数学期望
数学期望在解决许多具体问题时非常有效,这些领域包括但不限于医疗、经济、数据分析、社会活动以及彩票抽奖等。以下是一些具体的例子和应用:
用户11315985
2024/10/16
2830
随机变量的数学期望
Task1:随机事件与随机变量
② 随机事件:样本空间Ω中满足一定条件的子集,用大写字母 表示 (随机事件在随机试验中可能出现也可能不出现)
诡途
2022/05/09
8590
Task1:随机事件与随机变量
静息态fMRI中的非线性功能网络连接
在这项工作中,我们关注功能网络中的显式非线性关系。我们介绍了一种使用归一化互信息(NMI)计算不同大脑区域之间非线性关系的技术。我们使用模拟数据演示了我们提出的方法,然后将其应用到Damaraju等人先前研究过的数据集。静息状态fMRI数据包括151名精神分裂症患者和163名年龄和性别匹配的健康对照组。我们首先使用组独立成分分析(ICA)对这些数据进行分解,得到47个功能相关的内在连通性网络。我们的分析显示,大脑功能网络之间存在模块化的非线性关系,在感觉和视觉皮层尤其明显。有趣的是,模块化看起来既有意义又与线性方法所揭示的不同。分组分析发现,精神分裂症患者与健康对照组在显式非线性功能网络连接(FNC)方面存在显著差异,特别是在视觉皮层,在大多数情况下,对照组表现出更多的非线性(即,去掉线性关系的时间过程之间更高的归一化互信息)。某些域,包括皮层下和听觉,显示出相对较少的非线性FNC(即较低的归一化互信息),而视觉域和其他域之间的联系显示出实质性的非线性和模块化特性的证据。总之,这些结果表明,量化功能连接的非线性依赖性可能通过揭示通常被忽略的相关变化,为研究大脑功能提供一个补充和潜在的重要工具。除此之外,我们提出了一种方法,在增强的方法中捕捉线性和非线性效应。与标准线性方法相比,这种方法增加了对群体差异的敏感性,代价是无法分离线性和非线性效应。
悦影科技
2022/11/28
5630
推荐阅读
相关推荐
机器学习数学基础:随机事件与随机变量
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档
查看详情【社区公告】 技术创作特训营有奖征文