首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

#arima

R语言用多项式回归和ARIMA模型预测电力负荷时间序列数据

拓端

我们可以尝试一个非常简单的模型,其中日期Y_t的消耗量是时间,温度(以多项式形式表示)以及工业生产指数IPI_t的函数。

7910

R语言风险价值:ARIMA,GARCH,Delta-normal法滚动估计VaR(Value at Risk)和回测分析股票数据

拓端

此分析的目的是构建一个过程,以在给定时变波动性的情况下正确估计风险价值。风险价值被广泛用于衡量金融机构的市场风险。我们的时间序列数据包括 1258 天的股票收益...

7210

R语言ARIMA-GARCH波动率模型预测股票市场苹果公司日收益率时间序列

拓端

在本文中,我们将尝试为苹果公司的日收益率寻找一个合适的 GARCH 模型(点击文末“阅读原文”获取完整代码数据)。

12110

Python、R用深度学习神经网络组合预测优化能源消费总量时间序列预测及ARIMA、xgboost对比

拓端

在能源领域,精准预测能源消费总量对制定合理能源战略至关重要。当前,能源消费预测分析主要运用单一模型(如灰色预测法、时间序列分析法等)和组合模型两种方式。然而,单...

10410

数据分享|R语言ARIMA模型分析预测上海空气质量指数AQI时间序列

拓端

指数平滑法对于预测来说是非常有帮助的,而且它对时间序列上面连续的值之间相关性没有要求。

7800

R语言用多项式回归和ARIMA模型预测电力负荷时间序列数据

拓端

根据我们对温度的预测,我们可以预测电力消耗。绘制电力消耗序列图:(点击文末“阅读原文”获取完整代码数据)。

13910

数据分享|Eviews用ARIMA、指数曲线趋势模型对中国进出口总额时间序列预测分析

拓端

众自20世纪80年代至今,随着改革开放的深入以及中国最终加入WTO,我国的对外贸易实现了跨越式的发展,中国已经成为世界第一大出口国和第二大进口国,中国经济对世界...

83510

【机器学习 | ARIMA】经典时间序列模型ARIMA定阶最佳实践,确定不来看看?

计算机魔术师

【深度学习 | 核心概念】那些深度学习路上必经的核心概念,确定不来看看? (一) 作者: 计算机魔术师 版本: 1.0 ( 20...

2.1K10

【数据挖掘 & 机器学习 | 时间序列】时间序列必学模型: ARIMA超详细讲解

计算机魔术师

【数据挖掘 & 机器学习 | 时间序列】时间序列必学模型: ARIMA超详细讲解 作者: 计算机魔术师 版本: 1.0 ( 20...

2.2K30

R语言非线性动态回归模型ARIMAX、随机、确定性趋势时间序列预测个人消费和收入、用电量、国际游客数量

拓端

传统时间序列模型允许包含过去观察到的系列信息,但不允许客户包含其他可能相关的信息。例如,假期的影响、竞争对手的活动、法律变化、整体经济或其他外部变量可能解释了某...

39220

数据分享|R语言武汉流动人口趋势预测:灰色模型GM(1,1)、ARIMA时间序列、logistic逻辑回归模型

拓端

从AIC的结果来看,arima(2,1,1)模型拥有最小的AIC值,因此为最优模型,因此将arima(2,1,1)模型作为最优模型。

26920

数据分享|R语言交互可视化分析Zillow房屋市场:arima、VAR时间序列、XGBoost、主成分分析、LASSO报告

拓端

基于arima时间序列模型之上,考虑了季节性因素。把过去的值(AR)、过去的预测误差(MA)、过去值之间的差异(I)和季节长度(S)作为预测参数。通过对PACF...

24030

数据分享|R语言分析上海空气质量指数数据:kmean聚类、层次聚类、时间序列分析:arima模型、指数平滑法

拓端

最近我们被客户要求撰写关于上海空气质量指数的研究报告。本文向大家介绍R语言对上海PM2.5等空气质量数据(查看文末了解数据免费获取方式)间的相关分析和预测分析,...

44620

GPT4做数据分析时间序列预测之八相当棒2023.6.1

用户7138673

1、用了多种方法预测未来6个月的销售额,并计算了算法的标准差、平均值、与1绝对值求和等验证指标。

39410

非平稳时间序列

爱编程的小明

若非平稳序列经过差分后能显示出平稳序列的性质,我们就可以称这个非平稳序列为差分平稳序列,而ARIMA模型拟合就相当于给差分平稳序列使用ARMA模型进行拟合。 ...

86920

R语言对S&P500股票指数进行ARIMA + GARCH交易策略|附代码数据

拓端

最近我们被客户要求撰写关于ARIMA + GARCH交易策略的研究报告,包括一些图形和统计输出。

48500

一个简单实例解析移动平均模型 Moving-Average Models

deephub

本文将使用简单的说明性示例来解释移动平均模型(Arima [p,q]中的MA [Q])。

76640

Holt-Winters季节性预测模型

裴来凡

算法:Holt-Winters季节性预测模型是一种三次指数平滑预测,除了水平和趋势外,还将指数平滑应用到季节分量上。

1.9K20

ARIMA模型、随机游走模型RW模拟和预测时间序列趋势可视化

拓端

当一个序列遵循随机游走模型时,就说它是非平稳的。我们可以通过对时间序列进行一阶差分来对其进行平稳化,这将产生一个平稳序列,即零均值白噪声序列。例如,股票的股价遵...

2.2K30

Python | ARIMA时间序列模型预测航空公司的乘客数量

拓端

以下是一个时间序列示例,该示例说明了从1949年到1960年每月航空公司的乘客数量。

2.1K30
领券