前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
社区首页 >专栏 >含纳维-斯托克斯方程(气象学)实例,微分方程 VS 机器学习

含纳维-斯托克斯方程(气象学)实例,微分方程 VS 机器学习

作者头像
气象学家
发布于 2021-01-08 06:40:01
发布于 2021-01-08 06:40:01
2.1K0
举报
文章被收录于专栏:气象学家气象学家

来源:机器之心

本文约2700字,建议阅读6分钟

微分方程与机器学习作为 AI 领域建模的两种方法,各自有什么优势?

微分方程(DE)与机器学习(ML)类数据驱动方法都足以驱动 AI 领域的发展。二者有何异同呢?本文进行了对比。

微分方程模型示例

纳维-斯托克斯方程(气象学)

这一模型被用于天气预测。它是一个混沌模型,当输入存在一点点不准确,预测结果就会大相径庭。这就是为什么天气预报经常是错误的,天气模拟使用超级计算机完成。

爱因斯坦场方程(物理学)

爱因斯坦场方程描述了重力定律,也是爱因斯坦广义相对论的数学基础。

Black-Scholes(金融)

Black-Scholes 模型在股票市场为金融衍生品定价。

SIR 模型(流行病学)

SIR 是基础的房室模型,可以描述传染病的传播情况。

为什么以上 4 个方程都是微分方程?因为它们都包含某些未知函数的导数(即变化率)。这些未知函数(如 SIR 模型中的 S(t)、I(t) 和 R(t))被称为微分方程的解。

我们再来看一个模型。

Murray-Gottman(心理学)

这个模型用来预测浪漫关系的期限。根据心理学家 John Gottman 的开创性研究成果,持续的乐观氛围是预测婚姻成功的重要指标。

请注意 Murray-Gottman「爱情模型」实际上是一个差分方程(微分方程的一种姊妹模型)。差分方程输出离散的数字序列(例如,每 5 年的人口普查结果),而微分方程则建模连续数值(即持续发生的事件)。

上述 5 个模型(微分和差分方程)都是机械模型,我们可以在其中自行选择系统的逻辑、规则、结构或机制。当然,并不是每次试验都会成功,反复试验在数学建模中非常重要。

纳维 - 斯托克斯方程假定大气是流动的流体,上述方程式就是来自流体动力学。广义相对论假设在一种特殊的几何形态下,时空会发生扭曲。爱因斯坦提出关于时空扭曲的一些重要想法,数学家 Emmy Noether 和 David Hilbert 将这些想法整合到爱因斯坦场方程中。SIR 模型假设病毒是通过感染者与未感染者之间的直接接触传播的,并且感染者会以固定的速率自动恢复。

使用机械模型时,观察和直觉会指导模型的设计,而数据则用于后续验证假设。

所有这些都与经验模型或数据驱动模型形成鲜明对比,经验或数据驱动模型首先从数据出发。这其中就包括机器学习模型,其算法通过输入足够的高质量样本来学习系统的基础逻辑或规则。当人类很难分析或定义系统的机制时,这样的方法是很明智的。

数学模型的分类

机械模型对驱动系统的底层机制进行了假设,在物理学中很常用。实际上,数学建模是从 17 世纪人们试图解开行星运动规律时才开始发展的。

经验或数据驱动型建模,特别是机器学习,能够让数据来学习系统的结构,这个过程就叫做「拟合」。机器学习对于人类不确定如何将信号从噪声中分离出来的复杂系统格外有效,只需要训练一种聪明的算法,让它来代替你做繁琐的事情。

机器学习任务广义上可以分为:

  • 监督学习(即回归与分类)
  • 无监督学习(即聚类和降维)
  • 强化学习

如今机器学习和人工智能系统在日常生活中随处可见。从亚马逊、苹果和谷歌的语音助手到 Instagram、Netflix 和 Spotify 的推荐引擎,再到 Facebook 和 Sony 的人脸识别技术,甚至特斯拉的自动驾驶技术,所有这些都是由嵌入在大量代码下的数学与统计模型驱动的。

我们可以进一步将机械模型和经验模型分为确定性模型(预测是固定的)和随机性模型(预测包含随机性)。

  • 确定性模型忽略随机变化,在相同的初始条件下,总会预测出相同的结果。
  • 随机模型则考虑了随机变化,如系统中单个主体的异质性,比如人、动物、细胞之间就存在细微的差别。

随机性通常会在模型中引入一些现实性,但同时也存在一定的代价。在数学建模中,我们需要考虑模型的复杂性:简单的模型易于分析,但可能缺乏预测能力;复杂的模型具有现实性,但尝试弄清楚模型背后的原理也很重要。因此,我们需要在简单性和可分析性之间进行权衡,正如统计学家 George Box 所说:

所有的模型都是错误的,但其中一些是有用的。

在机器学习和统计学中,模型复杂度被称为「偏差 - 方差权衡」。高偏差模型过于简单,导致欠拟合,高方差模型存储的是噪声而不是信号(即系统的实际结构),会导致过拟合。

微分方程与机器学习示例对比

logistic 微分方程

该方程涉及农业、生物学、经济学、生态学、流行病学等领域。

绘制 dP/dt 对 t 的曲线:

logistic 模型的一个例子是哈伯特峰值石油模型。1956 年,石油地质学家 Marion Hubbert 为德克萨斯州的石油生产量创建了一个预测数学模型。

令 P 表示德克萨斯州的产油量。

如果右边是 rP,则石油生产量将会成倍增长。但是 Hubbert 知道油量一共只有 K=200 gigabarrels。随着时间的流逝,开采石油变得越来越困难,因此生产率 dP/dt 有所下降。(1-P/K) 项说明了资源有限的观察结果。注意,在考虑实际数据之前,我们就已经推断出石油开采的机制。

  • 代表生产率的参数 r=0.079 是从 50 年的数据中推断出来的。
  • 代表石油总量的参数 K=200,这是系统的稳定状态。

机器学习模型很难学习嵌入到微分方程中的逻辑所捕获的潜在机制。从本质上讲,任何算法都需要仅基于 1956 年之前存在的数据(绿色)预测能够出现的最大值:

完整起见,本文作者训练了一些多项式回归、随机森林、梯度提升树。注意只有多项式回归会外推超出原始数据范围。

随机森林

多项式回归

多项式回归可以很好地捕获信号,但是这种二次函数(图像为抛物线)在 1970 年达到 Peak Oil 之后,不可能再度凹回去。红色曲线只会越来越高,表示采油量接近无穷大。

哈伯特的机械模型解决了这一建模难题。

当人类很难捕捉和定义系统的规则和机制时,机器学习方法就会大放异彩。也就是说,从噪声中提取信号的方法超出了人们的努力范畴,更好的方法是让机器通过使用高质量示例来学习规则和信号,这就是用数据训练机器。数据越好,结果就越好。神经网络作为学术和应用机器学习领域的先锋,能够捕捉到惊人的复杂性。

求解 logistic 微分方程,并绘制 P(t) 和 P’(t)

上文介绍了 logistic 微分方程,并立即绘制了其解 P(t) 及其导数 dP/dt。这中间省略了一些步骤,详细操作方法如下。

方法 1:数值模拟

首先将微分方程编程到 Python 或 Matlab 中,在将 dP/dt 绘制为 t 的函数之前,使用数值求解器获得 P(t)。此处使用了 Python。

方法 2:获取解析解

该系统可以使用分离变量法求得解析解。请注意:大多数微分方程无法求得解析解。对此,数学家一直在寻找求解析解的方法。以新西兰科学家 Roy Kerr 为例,他发现了爱因斯坦场方程的一组精确解,进而使人类发现了黑洞。但还好,logistic 微分方程中有一些是具有确切解的。

首先把所有含有 P 的项移到等式左边,含有 t 的项移到等式右边:

将二者整合到一起可得到通解,即满足微分方程的一组无穷多个函数。

微分方程总是有无穷多个解,由一系列曲线以图像的方式给出。

将 P 重新排列,得到:

微分得到:

这两个公式对应上述 logistic 曲线和类高斯曲线。

总结

在机械建模中,对驱动系统的基本机制进行假设之前,研究者会仔细观察并研究现象,然后用数据验证模型,验证假设是否正确。如果假设正确,皆大欢喜;如果错误,也没关系,建模本身就是要反复试验的,你可以选择修改假设或者从头开始。

在数据驱动的建模中,我们让数据来构建系统的蓝图。人类要做的是为机器提供高质量、有代表性并且数量足够多的数据。这就是机器学习。在人类难以观察到现象本质时,机器学习算法可以从噪声中提取信号。神经网络和强化学习是当下热门的研究领域,它们能够创建具有惊人复杂性的模型。而 AI 革命尚在继续。

编辑:于腾凯

校对:洪舒越



本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2020-12-24,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 气象学家 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
解决物理难题,机器学习嵌入物理知识成为「时尚」
作者/文龙 伴随着人工智能的飞速发展,以神经网络为代表的深度学习宛如饥饿的猛兽,无论你喂多少的数据给它,它都不嫌多。但在现实中,有很多数据存在着丢失、不完整。再者,虽然神经网络可以实现很高的精度,但是它们不能为我们总结底层的原理。难道我们真的要丢掉无数学者总结出的知识,完全依靠数据来推动发展吗? 近日,发表在 Nature Review Physics 杂志上的一篇综述论文「Physics-informed machine learning」提出了「教机器学习物理知识以解决物理问题」的观点。该论文回顾了将物
机器之心
2023/03/29
8330
解决物理难题,机器学习嵌入物理知识成为「时尚」
「神经常微分方程」提出者之一David Duvenaud:如何利用深度微分方程模型处理连续时间动态
提到 David Duvenaud 你或许有些陌生,但最近大热的「神经常微分方程」想必你一定听说过。
机器之心
2020/07/06
1.1K0
机器学习会取代数学建模吗?
来源商业新知网,原标题:机器学习会取代数学建模吗?让我们假设一个微积分落后但深度学习发达的文明社会……
商业新知
2019/06/12
1.4K0
机器学习会取代数学建模吗?
神经网络常微分方程 (Neural ODEs) 解析
在本文中,我将尝试简要介绍一下这篇论文的重要性,但我将强调实际应用,以及我们如何应用这种需要在应用程序中应用各种神经网络。
AI科技评论
2019/08/15
7.1K1
基于神经网络的偏微分方程求解器再度取得突破,北大&字节的研究成果入选Nature子刊
偏微分方程的用处和复杂性相伴而生,例如,想要观察空气在飞机机翼附近的流动二维透视图,建模人员想知道流体在空间中任何一点(也称为流场)以及在不同时间的速度和压力的话,就需要用到偏微分方程。考虑到能量、质量和动量守恒定律,特定的偏微分方程,即Navier-Stokes方程可以对这种流体流动进行建模。
一枕眠秋雨
2024/03/11
1.3K0
基于神经网络的偏微分方程求解器再度取得突破,北大&字节的研究成果入选Nature子刊
北大张志华:机器学习就是现代统计学
而机器学习在一定程度上正是数学和工程的完美结合,毕竟用数学里面的概率论、随机分析等工具研究AI早已不是什么新鲜事情。例如机器学习的四个基本原则性的问题,即泛化性、稳定性、可计算性和可解释性就可以用数学工程手段来解决。
大数据文摘
2019/05/17
9090
贝叶斯网络之父Judea Pearl力荐、LeCun点赞,这篇长论文全面解读机器学习中的因果关系
图灵奖得主、贝叶斯网络之父 Judea Pearl 曾自嘲自己是「AI 社区的反叛者」,因为他对人工智能发展方向的观点与主流趋势相反。Pearl 认为,尽管现有的机器学习模型已经取得了巨大的进步,但遗憾的是,所有的模型不过是对数据的精确曲线拟合。从这一点而言,现有的模型只是在上一代的基础上提升了性能,在基本的思想方面没有任何进步。
机器之心
2019/12/11
8160
贝叶斯网络之父Judea Pearl力荐、LeCun点赞,这篇长论文全面解读机器学习中的因果关系
AI已能求解微分方程,数学是这样一步步“沦陷”的
AI也能解方程了?是的,它们不仅能解方程,还能“找到”方程!今天我们就简单梳理一下机器学习解方程的近些年最新进展。
量子位
2021/02/26
1.5K0
AI已能求解微分方程,数学是这样一步步“沦陷”的
机器学习应该准备哪些数学预备知识?
原题目如下: 机器学习应该准备哪些数学预备知识? 数据分析师,工作中经常使用机器学习模型,但是以调库为主。 自己一直也在研究算法,也裸写过一些经典的算法。 最近在看PRML这类书籍,感觉有点吃劲,主要
AI研习社
2018/03/16
1.3K0
鄂维南院士 | 机器学习:数学理论和科学应用
本文是2019年7月在西班牙瓦伦西亚举办的国际工业与应用数学大会上Peter Henrici奖讲座的报告。本报告将对以下内容做一个广泛的综述:
数据科学人工智能
2022/03/30
1.7K0
【数学建模】——【新手小白到国奖选手】——【学习路线】
掌握Python基础是进行数学建模的第一步。Python的易用性和丰富的库使其成为数据科学和数学建模的理想选择。
小李很执着
2024/06/21
1.1K0
【数学建模】——【新手小白到国奖选手】——【学习路线】
数学建模--微分方程
在数学建模中,微分方程模型是一种极其重要的方法,广泛应用于各种实际问题的描述和解决。微分方程模型通过建立变量及其变化率之间的关系,可以预测和分析系统的行为。这些模型在科技、工程、生态、环境、人口、交通、医学、经济管理等各个领域都有广泛应用。
用户11315985
2024/10/16
2900
数学建模--微分方程
被誉为「教科书」,牛津大学231页博士论文全面阐述神经微分方程,Jeff Dean点赞
在机器学习(ML)领域,动力学系统与深度学习的结合已经成为研究社区感兴趣的课题。尤其是对神经微分方程(neural differential equation, NDEs)而言,它证明了神经网络和微分方程是「一枚硬币的正反面」。
机器之心
2022/02/24
9950
被誉为「教科书」,牛津大学231页博士论文全面阐述神经微分方程,Jeff Dean点赞
KAN核心团队震撼力作!MIT华人用AI首次发现物理学全新方程
作者表示:这篇论文并没有解决价值数百万美元的核聚变问题,而是在更简单的设置中,引入一个有前途的概念验证。
新智元
2024/05/14
2200
KAN核心团队震撼力作!MIT华人用AI首次发现物理学全新方程
新的量子算法破解了非线性方程,计算机能否代替人类成为「先知」?
在某些领域,计算机能够轻易地预测未来,例如像树汁是如何在树干中流动的这样简单、直观的现象可以被线性微分方程的几行代码所捕获。但在非线性系统中,相互作用会影响到自身——当气流经过喷气机的机翼时,气流会改变分子相互作用,从而改变气流,循环往复。这种反馈循环会滋生混乱,即使是初始条件下的微小变化也会导致后来的行为产生巨大变化,从而使预测几乎不可能成功,无论计算机的算力如何。
机器之心
2021/01/20
6580
2022图机器学习必读的11大研究趋势和方向: 微分方程/子图表示/图谱理论/非对称/动态性/鲁棒性/通用性/强化学习/图量子等
来源:智源社区本文约6900字,建议阅读10+分钟本文为你总结了图机器学习过去一年中的研究亮点,并对该方向在 2022 年的发展趋势进行了展望。 [ 导读 ]几何机器学习和基于图的机器学习是当前最热门的研究课题之一。在过去的一年中,该领域的研究发展迅猛。在本文中,几何深度学习先驱 Michael Bronstein 和 Petar Veličković 合作,采访了多位杰出的领域专家,总结了该领域过去一年中的研究亮点,并对该方向在 2022 年的发展趋势进行了展望。 作者:Michael Bronstei
数据派THU
2022/03/04
7120
硬核NeruIPS 2018最佳论文,一个神经了的常微分方程
在最近结束的 NeruIPS 2018 中,来自多伦多大学的陈天琦等研究者成为最佳论文的获得者。他们提出了一种名为神经常微分方程的模型,这是新一类的深度神经网络。神经常微分方程不拘于对已有架构的修修补补,它完全从另外一个角度考虑如何以连续的方式借助神经网络对数据建模。在陈天琦的讲解下,机器之心将向各位读者介绍这一令人兴奋的神经网络新家族。
机器之心
2019/01/02
1K0
鄂维南院士:AI for Science,一场发生在当下的科技革命
机器之心报道 作者:闻菲 作为柯朗学派出身的应用数学家,鄂维南院士并没有纠结是数据的力量还是算法的力量,也没有囿于公式或定理,他一开始看到的,便是机器学习算法、数据、物理建模和高性能计算结合的力量,以及由此开拓的新的科学疆域。 对学者而言,受邀在学术顶会上发表报告,通常是比论文获奖来得更高的荣誉。就像奥运会一样,取得参赛资格也即接到邀请本身就是实力的证明,而在强者云集的舞台上发表主旨演讲(Keynote Speech)、特邀报告(Invited Talk)乃至全体特邀报告(Plenary Talk),更是充
机器之心
2022/08/25
4960
鄂维南院士:AI for Science,一场发生在当下的科技革命
数学建模模型知识点总结
用户11315985
2024/10/16
1450
数学建模模型知识点总结
求解微分方程,用seq2seq就够了,性能远超 Mathematica、Matlab
近日,Facebook AI研究院的Guillaume Lample 和Francois Charton两人在arxiv上发表了一篇论文,标题为《Deep Learning for Symbolic Mathematics》。
AI科技评论
2019/12/19
1.1K0
求解微分方程,用seq2seq就够了,性能远超 Mathematica、Matlab
推荐阅读
解决物理难题,机器学习嵌入物理知识成为「时尚」
8330
「神经常微分方程」提出者之一David Duvenaud:如何利用深度微分方程模型处理连续时间动态
1.1K0
机器学习会取代数学建模吗?
1.4K0
神经网络常微分方程 (Neural ODEs) 解析
7.1K1
基于神经网络的偏微分方程求解器再度取得突破,北大&字节的研究成果入选Nature子刊
1.3K0
北大张志华:机器学习就是现代统计学
9090
贝叶斯网络之父Judea Pearl力荐、LeCun点赞,这篇长论文全面解读机器学习中的因果关系
8160
AI已能求解微分方程,数学是这样一步步“沦陷”的
1.5K0
机器学习应该准备哪些数学预备知识?
1.3K0
鄂维南院士 | 机器学习:数学理论和科学应用
1.7K0
【数学建模】——【新手小白到国奖选手】——【学习路线】
1.1K0
数学建模--微分方程
2900
被誉为「教科书」,牛津大学231页博士论文全面阐述神经微分方程,Jeff Dean点赞
9950
KAN核心团队震撼力作!MIT华人用AI首次发现物理学全新方程
2200
新的量子算法破解了非线性方程,计算机能否代替人类成为「先知」?
6580
2022图机器学习必读的11大研究趋势和方向: 微分方程/子图表示/图谱理论/非对称/动态性/鲁棒性/通用性/强化学习/图量子等
7120
硬核NeruIPS 2018最佳论文,一个神经了的常微分方程
1K0
鄂维南院士:AI for Science,一场发生在当下的科技革命
4960
数学建模模型知识点总结
1450
求解微分方程,用seq2seq就够了,性能远超 Mathematica、Matlab
1.1K0
相关推荐
解决物理难题,机器学习嵌入物理知识成为「时尚」
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档