目前,我正试图理解量化感知的TensorFlow培训。据我所知,伪量化节点需要收集动态范围信息作为量化操作的校准。当我将同一模型与“普通”Keras模型和一次量化感知模型进行比较时,后者具有更多的参数,这是有意义的,因为我们需要在量化感知训练中存储激活的最小值和最大值。
请考虑以下示例:
import tensorflow as tf
from tensorflow.keras import layers
from tensorflow.keras.models import Model
def get_model(in_shape):
inpt = layers.Input(shape=in_shape)
dense1 = layers.Dense(256, activation="relu")(inpt)
dense2 = layers.Dense(128, activation="relu")(dense1)
out = layers.Dense(10, activation="softmax")(dense2)
model = Model(inpt, out)
return model
该模型有以下概述:
Model: "model"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input_2 (InputLayer) [(None, 784)] 0
_________________________________________________________________
dense_3 (Dense) (None, 256) 200960
_________________________________________________________________
dense_4 (Dense) (None, 128) 32896
_________________________________________________________________
dense_5 (Dense) (None, 10) 1290
=================================================================
Total params: 235,146
Trainable params: 235,146
Non-trainable params: 0
_________________________________________________________________
但是,如果我使我的模型优化意识到,它会打印以下摘要:
import tensorflow_model_optimization as tfmot
quantize_model = tfmot.quantization.keras.quantize_model
# q_aware stands for for quantization aware.
q_aware_model = quantize_model(standard)
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~#
Model: "model"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input_2 (InputLayer) [(None, 784)] 0
_________________________________________________________________
quantize_layer (QuantizeLaye (None, 784) 3
_________________________________________________________________
quant_dense_3 (QuantizeWrapp (None, 256) 200965
_________________________________________________________________
quant_dense_4 (QuantizeWrapp (None, 128) 32901
_________________________________________________________________
quant_dense_5 (QuantizeWrapp (None, 10) 1295
=================================================================
Total params: 235,164
Trainable params: 235,146
Non-trainable params: 18
_________________________________________________________________
我特别有两个问题:
quantize_layer
的目的是什么?。
我很感激任何帮助我(和其他偶然发现这个问题的人)理解量化感知训练的提示或进一步的材料。
发布于 2020-05-10 19:13:00
https://stackoverflow.com/questions/61637457
复制