Loading [MathJax]/jax/output/CommonHTML/config.js
前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
社区首页 >专栏 >【综述】自动机器学习最近研究进展

【综述】自动机器学习最近研究进展

作者头像
yuquanle
发布于 2019-10-08 08:38:28
发布于 2019-10-08 08:38:28
4280
举报
文章被收录于专栏:AI小白入门AI小白入门

跟着博主的脚步,每天进步一点点

本文首先从端到端系统的角度总结了自动机器学习在各个流程中的研究成果,然后着重对最近广泛研究的神经结构搜索进行了总结,最后讨论了一些未来的研究方向。

英文标题 | AutoML:A survey of State-of-the-art

作  者 | Xin He, Kaiyong Zhao, Xiaowen Chu

单  位 | Hong Kong Baptist University(中国香港浸会大学)

论文链接 | https://arxiv.org/abs/1908.00709

编  辑 | Camel 

深度学习已经运用到多个领域,为人们生活带来极大便利。然而,为特定任务构造一个高质量的深度学习系统不仅需要耗费大量时间和资源,而且很大程度上需要专业的领域知识。

因此,为了让深度学习技术以更加简单的方式应用到更多的领域,自动机器学习(AutoML)逐渐成为人们关注的重点。

本文首先从端到端系统的角度总结了自动机器学习在各个流程中的研究成果(如下图),然后着重对最近广泛研究的神经结构搜索(Neural Architecture Search, NAS)进行了总结,最后讨论了一些未来的研究方向。

一、数据准备

众所周知,数据对于深度学习任务而言至关重要,因此一个好的AutoML系统应该能够自动提高数据质量和数量,我们将数据准备划分成两个部分:数据收集和数据清洗

1、数据收集

现如今不断有公开数据集涌现出来,例如MNIST,CIFAR10,ImageNet等等。我们也可以通过一些公开的网站获取各种数据集,例如Kaggle, Google Dataset Search以及Elsevier Data Search等等。但是对于一些特殊的任务,尤其是医疗或者涉及到个人隐私的任务,由于数据很难获取,所以通常很难找到一个合适的数据集或者数据集很小。解决这一问题主要有两种思路:数据生成和数据搜索。

1)数据生成

  • 图像:
  • Cubuk, EkinD., et al. "Autoaugment: Learning augmentation policies fromdata." arXiv preprint arXiv:1805.09501 (2018).
  • 语音:
  • Park, DanielS., et al. "Specaugment: A simple data augmentation method for automaticspeech recognition." arXiv preprint arXiv:1904.08779(2019).
  • 文本
  • Xie, Ziang,et al. "Data noising as smoothing in neural network languagemodels." arXiv preprint arXiv:1703.02573 (2017).
  • Yu, Adams Wei,et al. "Qanet: Combining local convolution with global self-attention forreading comprehension." arXiv preprint arXiv:1804.09541 (2018).
  • GAN
  • Karras, Tero, Samuli Laine, and Timo Aila. "A style-basedgenerator architecture for generative adversarial networks." Proceedingsof the IEEE Conference on Computer Vision and Pattern Recognition. 2019.
  • 模拟器
  • Brockman, Greg, et al. "Openai gym." arXiv preprintarXiv:1606.01540 (2016).

2)数据搜索

  • Roh, Yuji, Geon Heo, and Steven Euijong Whang. "A survey ondata collection for machine learning: a big data-ai integrationperspective." arXiv preprint arXiv:1811.03402(2018).
  • Yarowsky, David. "Unsupervised word sense disambiguationrivaling supervised methods." 33rd annual meeting of the associationfor computational linguistics. 1995.
  • Zhou, Yan, and Sally Goldman. "Democraticco-learning." 16th IEEE International Conference on Tools withArtificial Intelligence. IEEE, 2004.

2、数据清洗

  • Krishnan,Sanjay, and Eugene Wu. "Alphaclean: Automatic generation of data cleaningpipelines." arXiv preprint arXiv:1904.11827 (2019).
  • Chu, Xu, etal. "Katara: A data cleaning system powered by knowledge bases andcrowdsourcing." Proceedings of the 2015 ACM SIGMOD InternationalConference on Management of Data. ACM, 2015.
  • Krishnan,Sanjay, et al. "Activeclean: An interactive data cleaning framework formodern machine learning." Proceedings of the 2016 InternationalConference on Management of Data. ACM, 2016.
  • Krishnan,Sanjay, et al. "SampleClean: Fast and Reliable Analytics on DirtyData." IEEE Data Eng. Bull. 38.3 (2015): 59-75.

二、特征工程

特征工程可分为三个部分:

1、特征选择

2、特征构造

  • H. Vafaie and K. De Jong, “Evolutionary feature spacetransformation,” in Feature Extraction, Construction and Selection. Springer,1998, pp. 307–323
  • J. Gama, “Functional trees,” Machine Learning, vol. 55, no. 3, pp.219–250, 2004.
  • D. Roth and K. Small, “Interactive feature space construction usingsemantic information,” in Proceedings of the Thirteenth Conference onComputational Natural Language Learning. Association for Computational Linguistics,2009, pp. 66–74.

3、特征提取

  • Q. Meng, D. Catchpoole, D. Skillicom, and P. J. Kennedy, “Relationalautoencoder for feature extraction,” in 2017 International Joint Conference onNeural Networks (IJCNN). IEEE, 2017, pp. 364–371.
  • O. Irsoy and E. Alpaydın, “Unsupervised feature extraction withautoencoder trees,” Neurocomputing, vol. 258, pp. 63–73, 2017.

三、模型生成

模型生成的方式主要有两种:一是基于传统的机器学习方法生成模型,例如SVM,decision tree等,已经开源的库有Auto-sklearn和TPOT等。另一种是是神经网络结构搜索(NAS)。我们会从两个方面对NAS进行总结,一是NAS的网络结构,二是搜索策略。

1、网络结构

1)整体结构(entire structure):该类方法是生成一个完整的网络结构。其存在明显的缺点,如网络结构搜索空间过大,生成的网络结构缺乏可迁移性和灵活性。

  • B. Zoph and Q. V. Le, “Neural architecture search with reinforcementlearning.” [Online]. Available:http://arxiv.org/abs/1611.01578
  • H. Pham, M. Y. Guan, B. Zoph, Q. V. Le, and J. Dean, “Efficientneural architecture search via parameter sharing,” vol. ICML. [Online].Available: http://arxiv.org/abs/1802.03268

2)基于单元结构(cell-based structure):为解决整体结构网络搜索存在的问题提出了基于单元结构设计的方法。如下图所示,搜索到单元结构后需要叠加若干个单元结构便可得到最终的网络结构。不难发现,搜索空间从整个网络缩减到了更小的单元结构,而且我们可以通过增减单元结构的数量来改变网络结构。但是这种方法同样存在一个很明显的问题,即单元结构的数量和连接方式不确定,现如今的方法大都是依靠人类经验设定。

  • H. Pham, M. Y. Guan, B. Zoph, Q. V. Le, and J. Dean, “Efficientneural architecture search via parameter sharing,” vol. ICML. [Online].Available: http://arxiv.org/abs/1802.03268
  • B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learningtransferable architectures for scalable image recognition.” [Online].Available: http://arxiv.org/abs/1707.07012
  • Z. Zhong, J. Yan, W. Wu, J. Shao, and C.-L. Liu, “Practicalblock-wise neural network architecture generation.” [Online]. Available:http://arxiv.org/abs/1708.05552
  • B. Baker, O. Gupta, N. Naik, and R. Raskar, “Designing neuralnetwork architectures using reinforcement learning,” vol. ICLR. [Online].Available: http://arxiv.org/abs/1611.02167
  • E. Real, S. Moore, A. Selle, S. Saxena, Y. L. Suematsu, J. Tan, Q.Le, and A. Kurakin, “Large-scale evolution of image classifiers.” [Online].Available: http://arxiv.org/abs/1703.01041
  • E. Real, A. Aggarwal, Y. Huang, and Q. V. Le, “Regularized evolutionfor image classifier architecture search.” [Online]. Available:http://arxiv.org/abs/1802.01548

3)层次结构(hierarchical structure):不同于上面将单元结构按照链式的方法进行连接,层次结构是将前一步骤生成的单元结构作为下一步单元结构的基本组成部件,通过迭代的思想得到最终的网络结构。如下图所示,(a)中左边3个是最基本的操作,右边是基于这些基本操作生成的某一个单元结构;(b)中左边展示了上一步骤中生成的若干个单元结构,通过按照某种策略将这些单元结构进行组合得到了更高阶的单元结构。

  • H. Liu, K. Simonyan, O. Vinyals, C. Fernando, and K. Kavukcuoglu,“Hierarchical representations for efficient architecture search,” in ICLR, p.13

4)基于网络态射结构(network morphism-based structure):一般的网络设计方法是首先设计出一个网络结构,然后训练它并在验证集上查看它的性能表现,如果表现较差,则重新设计一个网络。可以很明显地发现这种设计方法会做很多无用功,因此耗费大量时间。而基于网络态射结构方法能够在原有的网络结构基础上做修改,所以其在很大程度上能保留原网络的优点,而且其特殊的变换方式能够保证新的网络结构还原成原网络,也就是说它的表现至少不会差于原网络。

  • T. Chen, I. Goodfellow, and J. Shlens, “Net2net: Acceleratinglearning via knowledge transfer,” arXiv preprint arXiv:1511.05641, 2015.
  • T. Elsken, J. H. Metzen, and F. Hutter, “Efficient multi-objectiveneural architecture search via lamarckian evolution.” [Online]. Available:http://arxiv.org/abs/1804.09081
  • H. Cai, T. Chen, W. Zhang, Y. Yu, and J. Wang, “Efficientarchitecture search by network transformation,” in Thirty-Second AAAIConference on Artificial Intelligence, 2018

2、搜索策略

1)网格搜索

  • H. H. Hoos, Automated Algorithm Configuration and Parameter Tuning,2011
  • I. Czogiel, K. Luebke, and C. Weihs, Response surface methodologyfor optimizing hyper parameters. Universitatsbibliothek Dortmund, 2006.
  • C.-W. Hsu, C.-C. Chang, C.-J. Lin et al., “A practical guide tosupport vector classification,” 2003.
  • J. Y. Hesterman, L. Caucci, M. A. Kupinski, H. H. Barrett, and L. R.Furenlid, “Maximum-likelihood estimation with a contracting-grid searchalgorithm,” IEEE transactions on nuclear science, vol. 57, no. 3, pp.1077–1084, 2010.

2)随机搜索

  • J. Bergstra and Y. Bengio, “Random search for hyper-parameteroptimization,” p. 25.
  • H. Larochelle, D. Erhan, A. Courville, J. Bergstra, and Y. Bengio,“An empirical evaluation of deep architectures on problems with many factors ofvariation,” in Proceedings of the 24th international conference on Machinelearning. ACM, 2007, pp. 473–480.
  • L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar,“Hyperband: A novel bandit-based approach to hyperparameter optimization.”[Online]. Available: http://arxiv.org/abs/1603.06560

3)强化学习

  • B. Zoph and Q. V. Le, “Neural architecture search with reinforcementlearning.” [Online]. Available: http://arxiv.org/abs/1611.01578
  • B. Baker, O. Gupta, N. Naik, and R. Raskar, “Designing neuralnetwork architectures using reinforcement learning,” vol. ICLR. [Online].Available: http://arxiv.org/abs/1611.02167
  • H. Pham, M. Y. Guan, B. Zoph, Q. V. Le, and J. Dean, “Efficientneural architecture search via parameter sharing,” vol. ICML. [Online].Available: http://arxiv.org/abs/1802.03268
  • B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learningtransferable architectures for scalable image recognition.” [Online].Available: http://arxiv.org/abs/1707.07012
  • Z. Zhong, J. Yan, W. Wu, J. Shao, and C.-L. Liu, “Practical block-wiseneural network architecture generation.” [Online]. Available:http://arxiv.org/abs/1708.05552

4)进化算法

  • L. Xie and A. Yuille, “Genetic CNN,” vol. ICCV. [Online]. Available:http://arxiv.org/abs/1703.01513
  • M. Suganuma, S. Shirakawa, and T. Nagao, “A genetic programmingapproach to designing convolutional neural network architectures.” [Online].Available: http://arxiv.org/abs/1704.00764
  • E. Real, S. Moore, A. Selle, S. Saxena, Y. L. Suematsu, J. Tan, Q.Le, and A. Kurakin, “Large-scale evolution of image classifiers.” [Online].Available: http://arxiv.org/abs/1703.01041
  • K. O. Stanley and R. Miikkulainen, “Evolving neural networks throughaugmenting topologies,” vol. 10, no. 2, pp. 99–127. [Online]. Available:http://www.mitpressjournals.org/doi/10.1162/106365602320169811
  • T. Elsken, J. H. Metzen, and F. Hutter, “Efficient multi-objectiveneural architecture search via lamarckian evolution.” [Online]. Available:http://arxiv.org/abs/1804.09081

5)贝叶斯算法

  • J. Gonzalez, “Gpyopt: A bayesian optimization framework in python,”http://github.com/SheffieldML/GPyOpt, 2016
  • J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesianoptimization of machine learning algorithms,” in Advances in neural informationprocessing systems, 2012, pp. 2951–2959.
  • S. Falkner, A. Klein, and F. Hutter, “BOHB: Robust and efficienthyperparameter optimization at scale,” p. 10.
  • F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Sequential model-basedoptimization for general algorithm configuration,” in Learning and IntelligentOptimization, C. A. C. Coello, Ed. Springer Berlin Heidelberg, vol. 6683, pp.507–523. [Online]. Available:http://link.springer.com/10.1007/978-3-642-25566-3 40
  • J. Bergstra, D. Yamins, and D. D. Cox, “Making a science of modelsearch: Hyperparameter optimization in hundreds of dimensions for visionarchitectures,” p. 9.
  • A. Klein, S. Falkner, S. Bartels, P. Hennig, and F. Hutter, “Fastbayesian optimization of machine learning hyperparameters on large datasets.”[Online]. Available: http://arxiv.org/abs/1605.07079

6)梯度下降算法

  • H. Liu, K. Simonyan, and Y. Yang, “DARTS: Differentiablearchitecture search.” [Online]. Available: http://arxiv.org/abs/1806.09055
  • S. Saxena and J. Verbeek, “Convolutional neural fabrics,” inAdvances in Neural Information Processing Systems, 2016, pp. 4053–4061.
  • K. Ahmed and L. Torresani, “Connectivity learning in multi-branchnetworks,” arXiv preprint arXiv:1709.09582, 2017.
  • R. Shin, C. Packer, and D. Song, “Differentiable neural networkarchitecture search,” 2018.
  • D. Maclaurin, D. Duvenaud, and R. Adams, “Gradient-basedhyperparameter optimization through reversible learning,” in InternationalConference on Machine Learning, 2015, pp. 2113–2122.
  • F. Pedregosa, “Hyperparameter optimization with approximategradient,” arXiv preprint arXiv:1602.02355, 2016.
  • S. H. Han Cai, Ligeng Zhu, “PROXYLESSNAS: DIRECT NEURAL ARCHITECTURESEARCH ON TARGET TASK AND HARDWARE,” 2019
  • G. D. H. Andrew Hundt, Varun Jain, “sharpDARTS: Faster and MoreAccurate Differentiable Architecture Search,” Tech. Rep. [Online]. Available:https://arxiv.org/pdf/1903.09900.pdf

| 模型评估

模型结构设计好后我们需要对模型进行评估,最简单的方法是将模型训练至收敛,然后根据其在验证集上的结果判断其好坏。但是这种方法需要大量时间和计算资源。因此有不少加速模型评估过程的算法被提出,总结如下:

1、低保真度评估

  • l Klein, S. Falkner, S. Bartels, P. Hennig, and F. Hutter, “Fastbayesian optimization of machine learning hyperparameters on large datasets.”[Online]. Available: http://arxiv.org/abs/1605.07079
  • l B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learningtransferable architectures for scalable image recognition.” [Online]. Available:http://arxiv.org/abs/1707.07012
  • l E. Real, A. Aggarwal, Y. Huang, and Q. V. Le, “Regularized evolutionfor image classifier architecture search.” [Online]. Available:http://arxiv.org/abs/1802.01548
  • l A. Zela, A. Klein, S. Falkner, and F. Hutter, “Towards automateddeep learning: Efficient joint neural architecture and hyperparameter search.” [Online].Available: http://arxiv.org/abs/1807.06906
  • l Y.-q. Hu, Y. Yu, W.-w. Tu, Q. Yang, Y. Chen, and W. Dai,“Multi-Fidelity Automatic Hyper-Parameter Tuning via Transfer Series Expansion,” p. 8, 2019.

2、迁移学习

  • l C. Wong, N. Houlsby, Y. Lu, and A. Gesmundo, “Transfer learning withneural automl,” in Advances in Neural Information Processing Systems, 2018, pp.8356–8365.
  • l T. Wei, C. Wang, Y. Rui, and C. W. Chen, “Network morphism,” inInternational Conference on Machine Learning, 2016, pp. 564–572.
  • l T. Chen, I. Goodfellow, and J. Shlens, “Net2net: Acceleratinglearning via knowledge transfer,” arXiv preprint arXiv:1511.05641, 2015.

3、基于代理(surrogate-based)

  • l K. Eggensperger, F. Hutter, H. H. Hoos, and K. Leyton-Brown,“Surrogate benchmarks for hyperparameter optimization.” in MetaSel@ ECAI, 2014,pp. 24–31.
  • l C. Wang, Q. Duan, W. Gong, A. Ye, Z. Di, and C. Miao, “An evaluationof adaptive surrogate modeling based optimization with two benchmark problems,”Environmental Modelling & Software, vol. 60, pp. 167–179,2014.
  • l K. Eggensperger, F. Hutter, H. Hoos, and K. Leyton-Brown, “Efficientbenchmarking of hyperparameter optimizers via surrogates,” in Twenty-Ninth AAAIConference on Artificial Intelligence, 2015.
  • l K. K. Vu, C. D’Ambrosio, Y. Hamadi, and L. Liberti, “Surrogate-basedmethods for black-box optimization,” International Transactions in OperationalResearch, vol. 24, no. 3, pp. 393–424, 2017.
  • l C. Liu, B. Zoph, M. Neumann, J. Shlens, W. Hua, L.-J. Li, L.Fei-Fei, A. Yuille, J. Huang, and K. Murphy, “Progressive neural architecturesearch.” [Online]. Available: http://arxiv.org/abs/1712.00559

4、早停(early-stopping)

  • l A. Klein, S. Falkner, J. T. Springenberg, and F. Hutter, “Learningcurve prediction with bayesian neural networks,” 2016.
  • l B. Deng, J. Yan, and D. Lin, “Peephole: Predicting networkperformance before training,” arXiv preprint arXiv:1712.03351, 2017.
  • l T. Domhan, J. T.Springenberg, and F. Hutter, “Speeding up automatic hyperparameter optimizationof deep neural networks by extrapolation of learning curves,” in Twenty-FourthInternational Joint Conference on Artificial Intelligence, 2015.
  • l M. Mahsereci, L. Balles, C. Lassner, and P. Hennig, “Early stoppingwithout a validation set,” arXiv preprint arXiv:1703.09580, 2017.

| NAS算法性能总结

下图总结了不同NAS算法在CIFAR10上的搜索网络所花费的时间以及准确率。可以看到相比于基于强化学习和进化算法的方法,基于梯度下降和随机搜索的方法能够使用更少的时间搜索得到表现优异的网络模型。

| 总结

通过对AutoML最新研究进展的总结我们发现还有如下问题值得思考和解决:

1、完整pipeline系统

现如今有不少开源AutoML库,如TPOT,Auto-sklearn都只是涉及整个pipeline的某一个或多个过程,但是还没有真正实现整个过程全自动,因此如何将上述所有流程整合到一个系统内实现完全自动化是未来需要不断研究的方向。

2、可解释性

深度学习网络的一个缺点便是它的可解释性差,AutoML在搜索网络过程中同样存在这个问题。目前还缺乏一个严谨的科学证明来解释

  • 为什么某些操作表现更好,例如
  • 就基于单元结构设计的网络而言,很难解释为什么通过叠加单元结构就能得到表现不错的网络结构。另外为何ENAS提出的权值共享能够work同样值得思考。

3、可复现性

大多数的AutoML研究工作都只是报告了其研究成果,很少会开源其完整代码,有的只是提供了最终搜索得到的网络结构而没有提供搜索过程的代码。另外较多论文提出的方法难以复现,一方面是因为他们在实际搜索过程中使用了很多技巧,而这些都没有在论文中详细描述,另一方面是网络结构的搜索存在一定的概率性质。因此如何确保AutoML技术的可复现性也是未来的一个方向。

4、灵活的编码方式

通过总结NAS方法我们可以发现,所有方法的搜索空间都是在人类经验的基础上设计的,所以最终得到的网络结构始终无法跳出人类设计的框架。例如现如今的NAS无法凭空生成一种新的类似于卷积的基本操作,也无法生成像Transformer那样复杂的网络结构。因此如何定义一种泛化性更强,更灵活的网络结构编码方式也是未来一个值得研究的问题。

5、终身学习(lifelong learn)

大多数的AutoML都需要针对特定数据集和任务设计网络结构,而对于新的数据则缺乏泛化性。而人类在学习了一部分猫狗的照片后,当出现未曾见过的猫狗依然能够识别出来。因此一个健壮的AutoML系统应当能够终身学习,即既能保持对旧数据的记忆能力,又能学习新的数据。

The End

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2019-10-01,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 AI小白入门 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
AutoML: A Survey of the state-of-the-art
https://arxiv.org/pdf/1908.00709.pdf​arxiv.org
marsggbo
2019/08/08
1.6K0
【论文笔记系列】AutoML:A Survey of State-of-the-art (下)
上一篇文章介绍了Data preparation,Feature Engineering,Model Selection,这篇文章会继续介绍后面的内容。
marsggbo
2020/06/12
6320
【专知荟萃14】机器翻译 Machine Translation知识资料全集(入门/进阶/综述/视频/代码/专家,附PDF下载)
【导读】主题荟萃知识是专知的核心功能之一,为用户提供AI领域系统性的知识学习服务。主题荟萃为用户提供全网关于该主题的精华(Awesome)知识资料收录整理,使得AI从业者便捷学习和解决工作问题!在专知人工智能主题知识树基础上,主题荟萃由专业人工编辑和算法工具辅助协作完成,并保持动态更新!另外欢迎对此创作主题荟萃感兴趣的同学,请加入我们专知AI创作者计划,共创共赢! 今天专知为大家呈送第十四篇专知主题荟萃-机器翻译知识资料大全集荟萃 (入门/进阶/综述/视频/代码/专家等),请大家查看!专知访问www.zhu
WZEARW
2018/04/10
1.1K0
AutoML for Mobile Compression and Acceleration on Mobile Devices
第五期飞跃计划还有两个名额,联系小编,获取你的专属算法工程师学习计划(联系小编SIGAI_NO2)
SIGAI学习与实践平台
2019/05/07
2.5K0
AutoML for Mobile Compression and Acceleration on Mobile Devices
【论文笔记系列】AutoML:A Survey of State-of-the-art (下)
上一篇文章介绍了Data preparation,Feature Engineering,Model Selection,这篇文章会继续介绍后面的内容。
marsggbo
2020/02/11
5570
从安全视角对机器学习的部分思考
近几年,机器学习的大规模应用,以及算法的大幅度提升,吸引了学术界、工业界以及国防部门的大量关注。然而,对于机器学习算法本身的局限性,由于其快速的发展也不断的暴露了出来。因此,不论是人工智能领域的学者,还是安全领域的学者,都希望能够从不同的角度提高模型的泛化能力,自此之后,就拉开了一场在机器学习领域的军备竞赛。在不断的“攻”与“防”的竞争下,目前的针对机器学习模型的安全问题,也取得了不错的进展。所以,在本文中,首先对机器学习模型中可能出现安全隐患的部分进行了总览。然后针对不同的场景,进行了不同场景可能出现安全隐患的描述。最后,针对不同阶段的脆弱点,综述了当前的工作情况,并以此延伸出之后的工作可行的研究点。
SIGAI学习与实践平台
2019/01/23
9010
从安全视角对机器学习的部分思考
综述系列 | 多模态深度学习中的网络结构设计和模态融合方法汇总
多模态深度学习主要包含三个方面:多模态学习表征,多模态信号融合以及多模态应用,而本文主要关注计算机视觉和自然语言处理的相关融合方法,包括网络结构设计和模态融合方法(对于特定任务而言)。本文讲述了三种融合文本和图像的方法:基于简单操作的,基于注意力的,基于张量的方法。
guichen1013
2020/12/23
4.7K0
综述系列 | 多模态深度学习中的网络结构设计和模态融合方法汇总
【推荐系统教程】当机器学习遇到推荐系统,悉尼科技大学Liang Hu博士最新分享
【导读】第32届AAAI大会-AAAI 2018将于2月2号-7号在美国新奥尔良召开,悉尼科技大学Liang Hu博士即将在大会作报告“When Advanced Machine Learning Meets Intelligent Recommender Systems” ,主要教读者如何用最前沿的机器学习算法实现智能推荐系统。主要内容包括但不局限于:推荐系统的发展进程、如何用机器学习方法建模异构数据、在推荐系统中使用前沿的机器学习算法、构建先进的推荐系统等。文章对推荐算法的总结较为全面,并介绍最新的技术
WZEARW
2018/04/13
2.1K0
【推荐系统教程】当机器学习遇到推荐系统,悉尼科技大学Liang Hu博士最新分享
Github项目推荐 | Awesome-Image-Inpainting 图像补全相关资源大列表
[1] Bertalmio, M., Sapiro, G., Caselles, V., & Ballester, C. (2000, July). Image inpainting. In SIGGRAPH (pp. 417-424). [paper]
AI研习社
2019/07/04
2.8K0
Github项目推荐 | Awesome-Image-Inpainting 图像补全相关资源大列表
深度 | 神奇的神经机器翻译:从发展脉络到未来前景(附论文资源)
机器之心(海外)原创 作者:Mos Zhang 参与:Panda 机器翻译(MT)是借机器之力「自动地将一种自然语言文本(源语言)翻译成另一种自然语言文本(目标语言)」[1]。使用机器做翻译的思想最早由 Warren Weaver 于 1949 年提出。在很长一段时间里(20 世纪 50 年代到 80 年代),机器翻译都是通过研究源语言与目标语言的语言学信息来做的,也就是基于词典和语法生成翻译,这被称为基于规则的机器翻译(RBMT)。随着统计学的发展,研究者开始将统计模型应用于机器翻译,这种方法是基于对双语
机器之心
2018/05/08
1.3K0
深度 | 神奇的神经机器翻译:从发展脉络到未来前景(附论文资源)
车牌识别综述阅读笔记
目前车牌识别所遇到的难点主要体现在三个方面,主要体现在:车牌倾斜,图像噪声,还有车牌模糊。
润森
2022/08/18
2.3K0
车牌识别综述阅读笔记
NLP 研究灵感库
本文为雷锋字幕组编译的研究博客,原标题 Requests for research。
AI研习社
2018/07/26
5510
Python深度强化学习对冲策略:衍生品投资组合套期保值Black-Scholes、Heston模型分析
本文提出了一个在存在交易成本、市场冲击、流动性约束或风险限制等市场摩擦的情况下,使用现代深度强化学习方法对衍生品投资组合进行套期保值的框架。我们讨论了标准强化学习方法如何应用于非线性奖励结构,即本文中的凸风险度量。
拓端
2024/12/03
1410
Python深度强化学习对冲策略:衍生品投资组合套期保值Black-Scholes、Heston模型分析
观点 | 下一步研究目标:盘点NLP领域最具潜力的六大方向
选自ruder.io 作者:Sebastian Ruder 机器之心编译 参与:李泽南、黄小天 在开始你的研究之前,了解目标领域中最重要的研究方向是很重要的任务。本文中,德国海德堡大学的计算语言学在读博士 Sebastian Ruder 为我们介绍了 NLP 领域里最具潜力的几个研究方向。 目录 独立于任务的 NLP 数据增强 用于 NLP 的 few-shot learning 用于 NLP 的的迁移学习 多任务学习 跨语言学习 独立于任务的架构提升 当开始新领域的研究时,你会发现寻找引人注目的主题并学
机器之心
2018/05/09
8340
图片相似性匹配中的特征提取方法综述
stevenmiao(苗捷),2016年7月博士毕业于华南理工大学,应届毕业加入TEG信息安全部。八年计算机视觉算法经验,博士期间主要研究面向视频的特征提取和内容识别算法。入职以来主要负责部门内基于大规模图像和视频检索、匹配的恶意内容过滤算法。 一、引言 图片相似性匹配,即对比两张图片的相似程度,可以用于图片搜索、聚类、版权保护、恶意图片过滤等应用。本文主要介绍用于图片相似性匹配的特征各类特征提取方法。对于图片的相似性匹配,可根据匹配的形式分为四个层次,分别概括如下: 1.像素级别相似:两张图片每个对应
TEG云端专业号
2018/03/14
5.6K0
图片相似性匹配中的特征提取方法综述
自动驾驶中车辆的如何使用点云定位?
标题:Review on 3D Lidar Localization for Autonomous Driving Cars
点云PCL博主
2020/08/20
3.2K0
自动驾驶中车辆的如何使用点云定位?
TPAMI 2022 | 不同数据模态的人类动作识别综述,涵盖500篇文章精华
点击上方↑↑↑“OpenCV学堂”关注我来源:公众号 机器之心 授权 本文对最近被 TPAMI 接收的一篇综述文章 Human Action Recognition from Various Data Modalities: A Review(基于不同数据模态的人类动作识别综述)进行解读。 原综述文章地址:https:arxiv.org/pdf/2012.11866.pdf 1 概述 人类动作识别(Human Action Recognition, HAR)旨在理解人类的行为,并为每个行为分配一个标签。多
OpenCV学堂
2022/09/19
1.6K0
TPAMI 2022 | 不同数据模态的人类动作识别综述,涵盖500篇文章精华
【系列文章】面向自动驾驶的三维点云处理与学习(4)
标题:3D Point Cloud Processing and Learning for Autonomous Driving
点云PCL博主
2021/03/04
3830
【系列文章】面向自动驾驶的三维点云处理与学习(4)
用于 3D 点云形状分析的多视图Vision-to-Geometry知识迁移
论文标题:Multi-View Vision-to-Geometry Knowledge Transfer for 3D Point Cloud Shape Analysis
3D视觉工坊
2023/04/29
4980
用于 3D 点云形状分析的多视图Vision-to-Geometry知识迁移
ICLR 2025|小米新一代Kaldi语音识别算法CR-CTC,纯CTC性能实现SOTA
新一代 Kaldi 团队是由 Kaldi 之父、IEEE fellow、小米集团首席语音科学家 Daniel Povey 领衔的团队,专注于开源语音基础引擎研发,从神经网络声学编码器、损失函数、优化器和解码器等各方面重构语音技术链路,旨在提高智能语音任务的准确率和效率。
机器之心
2025/02/08
1340
ICLR 2025|小米新一代Kaldi语音识别算法CR-CTC,纯CTC性能实现SOTA
推荐阅读
AutoML: A Survey of the state-of-the-art
1.6K0
【论文笔记系列】AutoML:A Survey of State-of-the-art (下)
6320
【专知荟萃14】机器翻译 Machine Translation知识资料全集(入门/进阶/综述/视频/代码/专家,附PDF下载)
1.1K0
AutoML for Mobile Compression and Acceleration on Mobile Devices
2.5K0
【论文笔记系列】AutoML:A Survey of State-of-the-art (下)
5570
从安全视角对机器学习的部分思考
9010
综述系列 | 多模态深度学习中的网络结构设计和模态融合方法汇总
4.7K0
【推荐系统教程】当机器学习遇到推荐系统,悉尼科技大学Liang Hu博士最新分享
2.1K0
Github项目推荐 | Awesome-Image-Inpainting 图像补全相关资源大列表
2.8K0
深度 | 神奇的神经机器翻译:从发展脉络到未来前景(附论文资源)
1.3K0
车牌识别综述阅读笔记
2.3K0
NLP 研究灵感库
5510
Python深度强化学习对冲策略:衍生品投资组合套期保值Black-Scholes、Heston模型分析
1410
观点 | 下一步研究目标:盘点NLP领域最具潜力的六大方向
8340
图片相似性匹配中的特征提取方法综述
5.6K0
自动驾驶中车辆的如何使用点云定位?
3.2K0
TPAMI 2022 | 不同数据模态的人类动作识别综述,涵盖500篇文章精华
1.6K0
【系列文章】面向自动驾驶的三维点云处理与学习(4)
3830
用于 3D 点云形状分析的多视图Vision-to-Geometry知识迁移
4980
ICLR 2025|小米新一代Kaldi语音识别算法CR-CTC,纯CTC性能实现SOTA
1340
相关推荐
AutoML: A Survey of the state-of-the-art
更多 >
领券
社区富文本编辑器全新改版!诚邀体验~
全新交互,全新视觉,新增快捷键、悬浮工具栏、高亮块等功能并同时优化现有功能,全面提升创作效率和体验
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档
查看详情【社区公告】 技术创作特训营有奖征文